Information for Medical Applications

Amplifiers, Connectivity, Clocks, Data Converters, Digital Signal Processors, Digital Temperature Sensors, Interface, Logic, Microcontrollers, Power Management

20,2004 Texas Instruments Map8 Inside \Rightarrow **Medical Imaging** 3 **Consumer/Personal** 3. 5MHz **Medical Devices** 12 - A · I **Biophysical Monitoring** 17 CN64 **Automatic External** 16cm **Defibrillators (AED) DR66** 24 G50 **Digital Hearing Aids** 28 Connectivity 31 Logic 35 **Selection Guides** 36 **Resources** 59

System and equipment manufacturers and designers are responsible to ensure that their systems (and any TI devices incorporated in their systems) meet all applicable safety, regulatory and system-level performance requirements. Use of TI devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to hold TI harmless from any damages, claims, suits or expense resulting from such use. See Important Notice on page 2.

Table of Contents

Medical Imaging

Ultrasound Applications and Featured Products	3
8-Channel Variable-Gain Amplifier	4
8-Channel, 10- and 12-Bit, 40- to 70-MSPS ADCs With Serialized LVDS Interface \ldots	5
Wideband, Voltage-Feedback Operational Amplifier With Disable	5
Differential and Single-Ended Output in One Buffer	6
eq:low-Phase-Noise Clock Synthesizer With Multiplying, Dividing and Jitter Cleaning	6
CT Scanner Applications and Featured Products	7
Precision, High-Speed Transimpedance Amplifier	8
18-Bit, 500-kSPS, Unipolar Input, Sampling ADC With Parallel Interface	8
Dual Current-Input, 20-Bit ADC	9
8-Channel, 10-Bit, 65-MSPS, 1.8-V CMOS ADC	9
Magnetic Resonance Imaging (MRI) Applications and Featured Product	10
14-Bit, 125-MSPS ADC	10
DSPs for Imaging Applications	11
High-Performance Floating-Point DSPs	11
High-Performance Fixed-Point DSPs	11

Consumer/Personal Medical Devices

Design Example			
eatured Products			
6-Bit Ultra-Low-Power Microcontr	oller		
.8-V, Single-Supply Operational A	mplifier		
.25-V, 1-µA, 30-ppm/⁰C Max Shun	t Voltage Reference		
6-Bit ADC With Input Multiplexer	and Onboard Referenc	е	
Single-Cell to 3.0/3.3-V, 20-mA, Ult	tra-Low Quiescent Curr	ent Charge Pum	p15
Single-Chip Multiband RF Transceiv	ver		
Power-Efficient Fixed-Point DSPs .			

Biophysical Monitoring

Electrocardiogram (ECG) Front End	
Device Recommendations	
Pulse Oximetry	
Device Recommendations	
Featured Products	
Auto-Zero, Rail-to-Rail I/O Instrumentation Amplifier	
Auto-Zero, Single-Supply CMOS Op Amp	
High-Speed, 16-Bit, Micropower Sampling ADCs	
Power-Efficient Fixed-Point DSPs	
C2000™ Embedded Digital Signal Controller	
Automatic External Defibrillators (AED)	
Design Example	
Featured Products	
Low-Power, Programmable 16-Bit, 26-kSPS Dual-Channel Codec	

Automatic External Defibrillators (AED) (Continued)

Featured Products (Continued)
OMAP™ Processors for Portable Medical Devices
Next-Generation, Current-Mode PWM Controllers
owest-Noise Precision Data-Acquisition System-On-a-Chip
15-ppm/°C Max, 100-µA, SOT23-3 Series Voltage Reference
Digital Hearing Aids
Design Example
Featured Products
I5-ppm/°C Max, 100-μA, SOT23-3 Series Voltage Reference

Featured Products	
Micropower Audio Codec	
Power-Efficient Fixed-Point DSP	

Connectivity

UART Featured Products	
IR Encoder/Decoder Featured Product	
1394 Featured Products) -
USB Featured Products	}
PCI Bridge Featured Product	

Logic

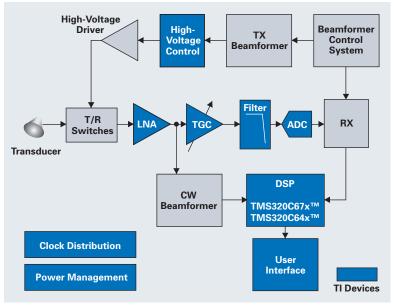
Little Logic: Single-, Dual- an	d Triple-Gate Logic Devices	
---------------------------------	-----------------------------	--

Selection Guides

Amplifiers	
Comparators	
Clock Distribution/Synthesizers	
Data Converters	
Voltage References	
Microcontrollers	
Digital Temperature Sensors	
Interface	
Power Management	53
Digital Signal Processors	
Resources	
Application Reports	
TI Worldwide Technical Support	60

Important Notice

System and equipment manufacturers and designers are responsible to ensure that their systems (and any TI devices incorporated in their systems) meet all applicable safety, regulatory and system-level performance requirements. All application-related information in this publication (including application descriptions, suggested TI devices and other materials) is provided for reference only. While we have taken care to assure it is accurate, this information is subject to customer confirmation, and TI disclaims all liability for system designs and for any applications assistance provided by TI. Use of TI devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless TI from any and all damages, claims, suits or expense resulting from such use.


Ultrasound Applications

LVDS IN 7 ÷ ADS5270/75 VCA8613 ÷ LVDS IN 1 16-Channel Probe/ LC Power ADS1605 Digital Protection Delay Management Beamformer IVDS IN 7 : VCA8613 ADS5270/75 ÷ LVDS IN 1

the transducer element immediately switches into receive mode. The pulse, now in the form of mechanical energy, propagates through the body as high-frequency sound waves, typically in the range of 1 to 15 MHz. As it does, the signal weakens rapidly, falling off as the square of the distance traveled. As the signal travels, portions of the wave front energy are reflected. These reflections are the echoes that the receive electronics must detect. Signals reflected immediately will be very strong, as they are from reflections close to the surface, while reflections that occur long after the transmit pulse will be very weak, reflecting from deep in the body.

Because of limits on the amount of energy that can be put into the body, the industry must develop extremely sensitive receive electronics. At focal points close to the surface, the receive echoes are strong, requiring little if any amplification. This region is referred to as the near field. But at focal points deep in the body, the receive echoes will be extremely weak and must be amplified by a factor of 1000 or more. This region is referred to as the far field. These regions represent the two extremes in which the receive electronics must operate.

4

5

5

6

6

8

8

9

9

10

11

11

Ultrasound system block diagram.

3

 \rightarrow

To Know More

For detailed information about TI products:

VCA8613 8-Channel Variable-Gain Amplifier

CDC7005 Low-Phase-Noise Clock Synthesizer

ADS8383 18-Bit, 500-kSPS, Unipolar Input ADC

DDC112 Dual Current-Input, 20-Bit ADC

ing at different points, an image is assembled.

ADS5500 14-Bit, 125-MSPS ADC

ADS5270/71/72/73/75/76/77 8-Channel, 10- and 12-Bit,

40- to 70-MSPS ADCs With Serialized LVDS Interface

OPA690 Wideband, Voltage-Feedback Operational Amplifier

OPA380 Precision, High-Speed Transimpedance Amplifier

ADS5122 8-Channel, 10-Bit, 65-MSPS, 1.8-V CMOS ADC

TMS320C67x[™] High-Performance Floating-Point DSPs

Ultrasound systems, both medical and industrial, use focal imaging

techniques to achieve imaging performance far beyond what can be

receivers, a high-definition image can be built by time shifting, scaling

and scaling receive signals from a transducer array provides the ability

to "focus" on a single point in the scan region. By subsequently focus-

When initiating a scan, a pulse is generated and transmitted from each

of the eight to 512 transducer elements. These pulses are timed and

scaled to "illuminate" a specific region of the body. After transmitting,

and intelligently summing echo energy. The concept of time shifting

achieved through a single-channel approach. Using an array of

TMS320C64x[™] High-Performance Fixed-Point DSPs

CDCM1804 Differential and Single-Ended Output in One Buffer

4

 \rightarrow

Ultrasound Applications and Featured Products

In the high-gain (far field) mode, the limit of performance is the sum of all noise sources in the receive chain. The two largest contributors of receive noise are the transducer/cable assembly and the receive low noise amplifier (LNA). In low gain (near field), the limit of performance is defined by the magnitude of the input signal. The ratio between these two signals defines the dynamic range of the system. Many receive chains integrate the LNA with a variable gain amplifier.

Some sort of low-pass filtering always follows the LNA+VCA combination. High-end systems implement filters with more than five poles while low-end systems require only two poles. Many mid-range and high-end systems will rebuffer after filtering. In selecting an op amp, the primary considerations include signal swing, minimum and maximum input frequencies, harmonic distortion and gain requirements. Analog-to-digital converters (ADCs) are typically 10- and 12-bit. SNR and power consumption are the most important issues, followed by channel integration.

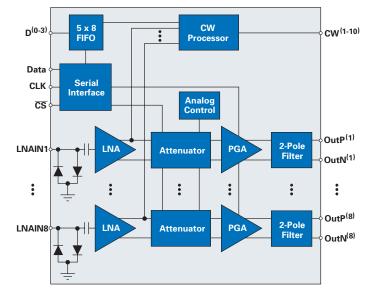
Another trend in ADCs is the implementation of an LVDS interface between the ADC and the beamformer. By serializing the data coming out of the ADC, the number of interface lines can be reduced from 6044 to 1024 for a 512-channel system. This reduction translates to smaller and lower-cost PC boards, an essential part of portable imaging systems. The signal assembly is accomplished with a digital beamformer. This is typically a custom-designed ASIC, but this function has been implemented in different forms of programmable logic. Within the beamformer the digitized signal is scaled and time delayed to create the focusing effect in the receive chain. The properly adjusted signals are then summed together across all receive channels and passed to the imaging system. The imaging system can be developed as a separate ASIC, can be a programmable processor such as a DSP, or might be a full desktop computer.

Transmit elements require the control of 100 V to 200 V of signal swing. This is almost always accomplished with the use of high-voltage FETs. Control of the FETs can take one of two forms: on-off (push-pull) or class-AB linear control. The most popular is the push-pull approach, as it requires a much simpler and lower-cost interface to the FETs. The class-AB approach dramatically improves harmonic distortion but requires more complex drivers and consumes more power.

A wide variety of TI products have been chosen by system and equipment manufacturers for their ultrasound imaging applications, including op amps; single, dual and octal ADCs (all with fast-input overload recovery and excellent dynamic performance); and the VCA8613, which integrates a two-pole, low-pass filter. TI is also offering the ADS5270, an advanced 8-channel, 12-bit data converter with serialized LVDS interface, specifically for the ultrasound market.

8-Channel Variable-Gain Amplifier VCA8613

Get samples, datasheets and app reports at: www.ti.com/sc/device/VCA8613


The VCA8613 is an 8-channel variable-gain amplifier that can meet the needs of system designers in many of their ultrasound applications. Each channel consists of a low-noise pre-amplifier (LNA) and a variable-gain amplifier (VGA). The differential outputs of the LNA can be switched through the 8 x 10 cross-point switch, which is programmable through the serial interface input port.

Key Features

- 3-V operation
- Low input noise: 1.5 nV/ \sqrt{Hz} at f_{IN} = 5 MHz
- Extremely low-power operation of 75 mW/channel
- Integrated low-pass, two-pole filter, 15-MHz bandwidth
- Integrated input clamp diodes
- Differential output
- Integrated input LNA
- Readable control registers
- Integrated continuous wave (CW) processor

Applications

- · Portable ultrasound
- Portable dedicated scanners
- Industrial scanners
- Portable test equipment

VCA8613 8-channel variable-gain amplifier functional diagram.

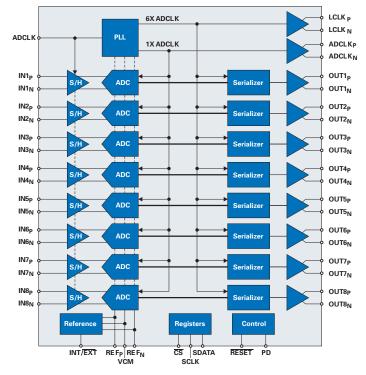
5

←

Ultrasound Featured Products

8-Channel, 10- and 12-Bit, 40- to 70-MSPS ADCs With Serialized LVDS Interface ADS5270, ADS5271, ADS5272, ADS5273, ADS5275, ADS5276, ADS5277

Get samples and app reports at: www.ti.com/ads527x


The ADS527x operates from a single +3.3-V analog supply and features internal references to simplify system design, or an external reference can be used. The very low power consumption allows for the highest level of system integration densities. Serialized LVDS outputs reduce the number of interface lines and package size.

Key Features

- 10- and 12-bit resolution
- 40- to 70-MSPS sample rates
- 720-mW to 1-W total power dissipation
- 60-dB SNR (10-bit) and 70-dB SNR (12-bit) with $f_{IN} = 10 \text{ MHz}$
- Serialized LVDS outputs meet or exceed requirements of ANSI TIA/EIA-644-A standard
- Internal and external references
- 3.3-V analog/digital supply
- Pin and format compatibility among family
- Packaging: 80-pin TQFP

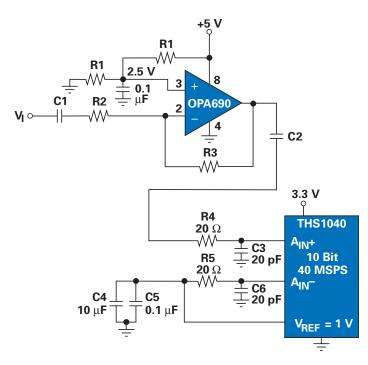
Applications

- Portable ultrasound
- Portable test equipment

ADS527x functional block diagram.

Wideband, Voltage-Feedback Operational Amplifier With Disable OPA690

Get samples, datasheets, app reports and EVMs at: www.ti.com/sc/device/0PA690


The new internal architecture of the OPA690 provides slew rate and full-power bandwidth previously found only in wideband current-feedback op amps. Using a single supply, the OPA690 delivers high output currents up to 150 mA with a 150-MHz bandwidth.

Key Features

- Flexible supply range:
 - +5-V to +12-V single supply
 - ±2.5-V to ±5-V dual supply
- Unity-gain stable: 500 MHz (G = 1)
- High output current: 190 mA
- Output voltage swing: ±4.0 V
- High slew rate: 1800 V/µs
- Low supply current: 5.5 mA
- Low disabled current: 100 μA
- Wideband +5-V operation: 220 MHz (G = 2)

Applications

- Video line driver
- · High-speed imaging channels
- ADC buffers
- Portable instruments
- Active filters

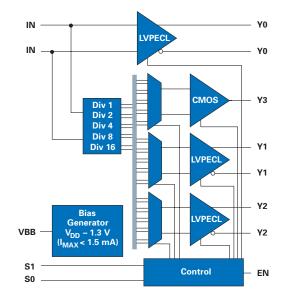
OPA690 in a single-supply ADC driver application.

6

Ultrasound Featured Products

Differential and Single-Ended Output in One Buffer CDCM1804

Get samples, datasheets and app reports at: www.ti.com/sc/device/CDCM1804


The CDCM1804 clock driver distributes one pair of differential clock inputs to three pairs of LVPECL differential clock outputs Y[2:0] and /Y[2:0] with minimum skew for clock distribution. It is specifically designed for driving 50- Ω transmission lines. Additionally, the CDCM1804 offers a single-ended LVCMOS output Y3. This output is delayed by 1 ns over the three PECL output stages to minimize noise impact during signal transitions.

Key Features

- Distributes one differential clock input to three LVPECL differential clock outputs and one LVCMOS single-ended output
- Programmable output divider for two LVPECL outputs and one LVCMOS output
- Low-output 20-ps (typical) skew for clock distribution applications for LVPECL outputs; 1-ns output skew between LVCMOS and LVPECL transitions, minimizing noise
- V_{CC} range 3.0 to 3.6 V
- Signaling rate up to 800 MHz for LVPECL and 200 MHz for LVCMOS
- Differential input stage for very wide common-mode range also provides VBB bias-voltage output for single-ended input signals
- Receiver input threshold ±75 mV
- 24-pin MLF package (4 mm x 4 mm)

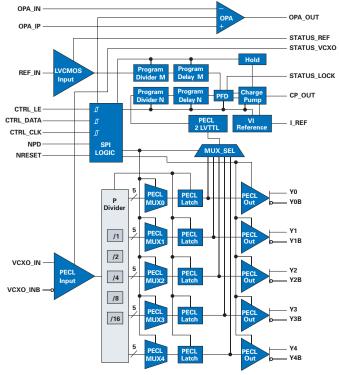
Applications

- Medical imaging
- Telecommunications
- Data communications
- Test equipment

CDCM1804 functional diagram.

Low-Phase-Noise Clock Synthesizer With Multiplying, Dividing and Jitter Cleaning CDC7005

Get samples, datasheets and app reports at: www.ti.com/sc/device/CDC7005

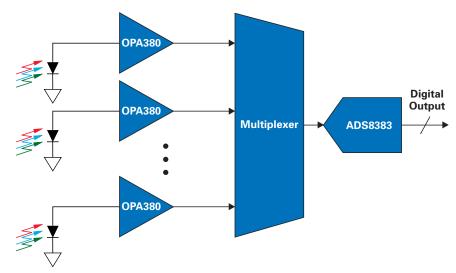

A synchronizing clock can be used to take a system clock signal (from a backplane, for example) and provide outputs to a subsystem at the same frequency or an even multiple/divisor of that frequency. In addition to synchronizing the system clock, synchronizers can also remove jitter from the clock source.

Key Features

- High-performance 1:5 PLL clock synchronizer and jitter cleaner
- Programmable multiplier and divider
- Two clock inputs: VCXO_IN clock is synchronized to REF_IN clock
- VCXO is external to allow for flexible application frequencies
- Supports five differential LVPECL outputs
- Efficient jitter cleaning from low PLL loop bandwidth
- Low-phase noise characteristic
- Programmable delay for phase adjustments
- Packaged in a 64-pin BGA (0.8-mm pitch ZVA)
- Industrial temperature range -40°C to 85°C

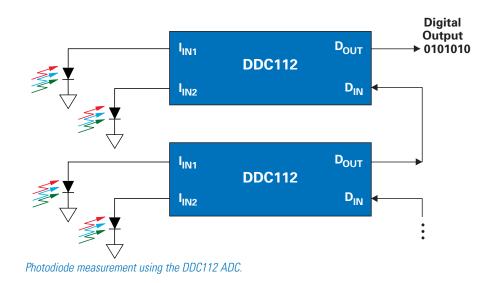
Applications

- Medical imaging
- Telecommunications
- Wireless infrastructure
- Data communications
- Test equipment



CDC7005 functional diagram.

CT Scanner Applications


Texas Instruments offers several products that can meet the needs of designers of medical imaging systems by enabling the measurement of low-level currents produced by the photodiode arrays within a computed tomography (CT) scanner. The OPA380 family of transimpedance amplifiers provides high-speed (90-MHz gain bandwidth [GBW])

operation, with extremely high precision, excellent long-term stability, and very low 1/f noise. It is ideally suited for high-speed CT scanner photodiode applications. The ADS8383 is an 18-bit 500-kSPS ADC. The high-speed operation of the ADS8383 makes it well-suited for use with a multiplexer to measure multiple OPA380 channels.

CT scanner application using the OPA380 and the ADS8383.

The DDC112 is a complete two-channel solution for measuring photodiodes. Its patented topology includes both the switched integrator front end and a high speed 20-bit ADC. Two photodiodes directly connect to each device. A selection of internal integration capacitors along with optional external capacitors provides a full-scale range from 50 pC to 1000 pC. The continuous conversion rate is 3 kSPS; single integrations can be performed as quickly as 50 μ s. The simple serial output can be daisy-chained to minimize wiring when using multiple devices.

 \leftarrow

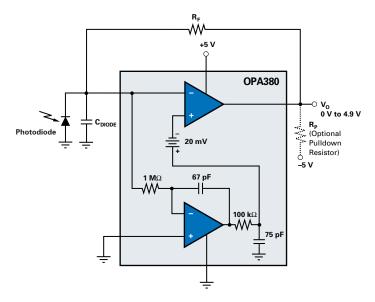
 \rightarrow

8

CT Scanner Featured Products

Precision, High-Speed Transimpedance Amplifier OPA380

Get datasheets and app reports at: www.ti.com/sc/device/OPA380


The OPA380 transimpedance amplifier family provides high speed, high precision and long-term stability. It exceeds the offset, drift and noise performance that conventional JFET op amps provide. The OPA380 is well suited for fast control loops that detect and react to fast changes in the optical power level on a fiber.

Key Features

- Over 1-MHz TIA bandwidth
- Dynamic range: 5 decades
- Inherent long-term stability
- Output swing includes ground
- Very low 1/f noise
- Bias current: 50 pA (max)
- Offset voltage: 25 µV (max)
- Drift: 0.1 µV/°C
- Gain bandwidth: 90 MHz
- Quiescent current: 6 mA
- Supply range: 2.7 V to 5.5 V
- Single and dual versions
- Packaging: MSOP-8 and SO-8

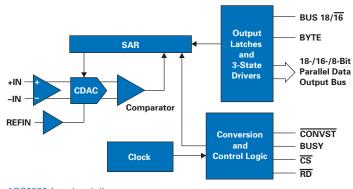
Applications

- CAT-scanner frontend
- Precision current-to-voltage measurements
- Optical amplifiers
- Photodiode monitoring

OP380 application diagram.

18-Bit, 500-kSPS, Unipolar Input, Sampling ADC With Parallel Interface ADS8383

Get samples, datasheets, app reports and EVMs at: www.ti.com/sc/device/ADS8383


The ADS8383 includes an 18-bit, capacitor-based SAR ADC with inherent sample and hold. It offers a full 18-bit interface: a 16-bit option where data is read using two read cycles or an 8-bit option using three read cycles.

Key Features

- 500-kSPS sample rate
- 18-bit NMC over temperature
- Zero latency
- Low power: 110 mW at 500 kHz
- Onboard reference buffer
- High-speed parallel interface
- Wide digital supply
- 8-/16-/18-bit bus transfer
- Packaging: 48-pin TQFP

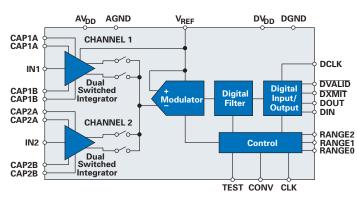
Applications

- Medical instruments
- Transducer interface
- High accuracy data acquisition systems

ADS8383 functional diagram.

Dual Current-Input, 20-Bit ADC DDC112

Get samples, datasheets, app reports and EVMs at: www.ti.com/sc/device/DDC112


Low-level current-output devices like photosensors can be directly connected to the DDC112 inputs. Charge integration is continuous as each input uses two integrators. While one integrator is being digitized, the other is integrating. For each of its two inputs, the DDC112 combines current-to-voltage conversion, continuous integration, programmable full-scale range, analog-to-digital conversion and digital filtering to achieve a precision, wide-range digital result.

Key Features

- Monolithic charge measurement ADC
- Digital filter noise reduction: 3.2 ppm, rms
- Integral linearity: ±0.005% Reading ±0.5-ppm FSR
- High precision, true integrating function
- Programmable full scale
- Single supply
- Cascadable output
- Packaging: 28-pin SO or 32-pin TQFP

Applications

- Direct photosensor digitization
- CT scanner DAS
- Infrared pyrometer
- Liquid/gas chromatography
- Blood analysis

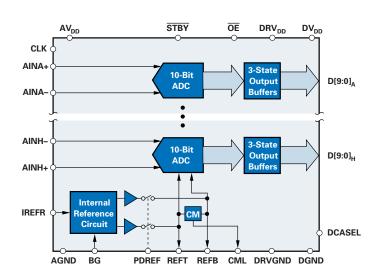
DDC112 functional diagram.

CT Scanner Featured Products

8-Channel, 10-Bit, 65-MSPS, 1.8-V CMOS ADC ADS5122

Get samples, datasheets and app reports at:

www.ti.com/sc/device/ADS5122

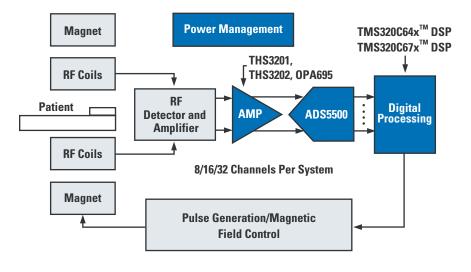

The ADS5122 operates from a single 1.8-V supply which offers flexibility for 1.8-V and 3.3-V digital I/O. A single-ended input clock is used for simultaneous sampling of up to eight analog differential input channels. The flexible duty-cycle-adjust circuit allows the use of a non-50% clock duty cycle.

Key Features

- · Eight different analog input channels
- 1-V_{PP} differential input range
- Int/Ext voltage reference
- Analog/digital supply: 1.8 V/3.3 V
- Differential nonlinearity: ±0.4 LSB
- Integral nonlinearity: ±1.0 LSB
- Signal-to-noise: 59 dB at f_{IN} = 20 MHz
- Power dissipation: 733 mW
- Individual channel power down
- Packaging: 257-lead, 0.8 ball pitch, MicroStar BGA™

Applications

- Portable ultrasound
- Portable instrumentation


ADS5122 functional diagram.

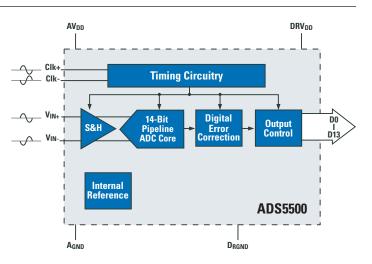
 \leftarrow

Magnetic Resonance Imaging (MRI) Applications and Featured Product

The ADS5500 can be designed into medical MRI equipment. The 14-bit resolution provides higher SNR, which allows the designer to lower the

magnetic field energy necessary for high-image quality. Additionally, 125 MSPS allows for oversampling, which also contributes to higher

MRI application using ADS5500 and OPA695.


14-Bit, 125-MSPS ADC ADS5500

Get datasheets, app reports and EVMs at: www.ti.com/ads5500

The ADS5500 provides a complete converter solution. It includes a highbandwidth linear sample-and-hold stage and internal reference. Designed for applications demanding the highest speed and dynamic performance in very little space, the ADS5500 has low 780-mW power consumption with a 3.3-V single supply voltage. An internal reference is provided, and parallel CMOS-compatible output ensures seamless interfacing with common logic. Available in a 64-pin TQFP PowerPADTM package, the ADS5500 is specified over a -40° C to $+85^{\circ}$ C temperature range.

Key Features

- 14-bit resolution
- 125-MSPS sample rate
- High SNR: 70.5 dB at 100-MHz f_{IN}
- High SFDR: 82 dB at 100-MHz f_{IN}
- 2.2-V_{PP} differential input voltage
- Internal voltage reference
- 3.3-V single-supply voltage
- Power dissipation: 780 mW
- Packaging: 64-pin TQFP PowerPAD
- Recommended op amps: THS3202, THS3201, THS4503, OPA695, OPA847

ADS5500 functional diagram.

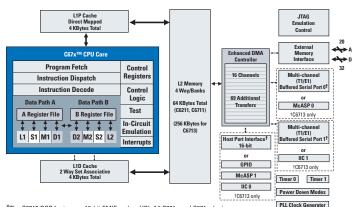
Applications

- MRI equipment
- Test and measurement instrumentation
- Single and multichannel digital receivers
- Video and imaging

DSPs for Imaging Applications

High-Performance Digital Signal Processors TMS320C67x[™] Floating-Point DSPs

Get more information at: www.ti.com/floatingpointdsps


To develop high-precision applications, TMS320C67x[™] DSPs offer the speed, precision, power savings and dynamic range to meet a wide variety of design needs. These dynamic DSPs are the ideal solution for demanding applications such as medical imaging. TI's C67x[™] DSPs are backed by an extensive selection of optimized algorithms and industry-leading development tools.

Key Features

- Up to 1350 MFLOPS at 225 MHz (less than \$0.02/MFLOPS)
- C67x DSPs are 100% code-compatible with 32-bit instructions, single and double precision
- C6000[™] DSP platform VelociTI[™] advanced VLIW architecture
- Two inter-integrated circuit (I²C) bus interfaces
- Two multichannel buffered serial ports (McBSPs)
- Up to 256 Kbytes of on-chip memory
- 16-channel DMA controller
- Up to eight 32-bit instructions executed each cycle
- Eight independent, multipurpose functional units and thirty-two 32-bit registers
- Industry's most advanced DSP C compiler and assembly optimizer maximize efficiency and performance
- IEEE floating-point format
- Packaging: 27/35-mm BGA and 28-mm TQFP options

Applications

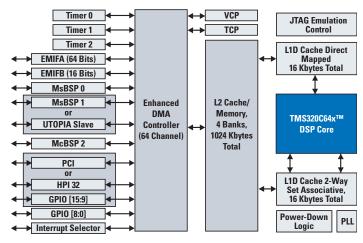
- Digital imaging
- Medical ultrasound
- Portable ultrasound equipment
- CT scanners
- Magnetic resonance imaging

^{*}The C6712 DSP features a 16-bit EMIF and no HPI. All C621x and C671x devices are pin compatible. The C6713 DSP is a superset of the C6711 DSP and will include I²S, I²C and S/PDIF transmit support as well as enhanced memory space.

The C67x[™]DSPs' innovative two-level cache memory structure enables a breakthrough in system cost/performance.

High-Performance Digital Signal Processors TMS320C64x[™] Fixed-Point DSPs

Get more information at: www.ti.com/dsp


TMS320C64x[™] DSPs offer the highest level of performance to meet the demands of the digital age. At clock rates of up to 1 GHz, the C64x[™] DSPs can process information at a rate of more than 5760 MIPS. TI's C64x DSPs are backed by an extensive selection of optimized algorithms and industry-leading development tools.

Key Features

- Highest in-class performance with devices running at clock speeds of up to 1 GHz
- TMS320C64x DSPs are 100% code-compatible with C6000™ DSPs
- C64x DSPs offer up to 8000 MIPS with costs as low as \$19.95
- 64-channel enhanced direct memory access (EDMA) controller
- Two synchronous external memory interfaces (EMIFs)
- Up to three multichannel buffered serial ports (McBSPs)
- PCI or Utopia Slave option
- Turbo and Viterbi coprocessors
- Ethernet MAC
- Special instructions/capabilities: imaging, audio, accelerated video and data
- Industry's most advanced DSP C compiler and assembly optimizer maximize efficiency and performance
- Packaging: 23/27-mm BGA options

Applications

- CT medical imaging
- PET medical imaging
- MRI medical imaging
- Ultrasound

The $C64x^{\text{TM}}$ fixed-point DSPs offer the highest level of performance to address the demands of the digital age.

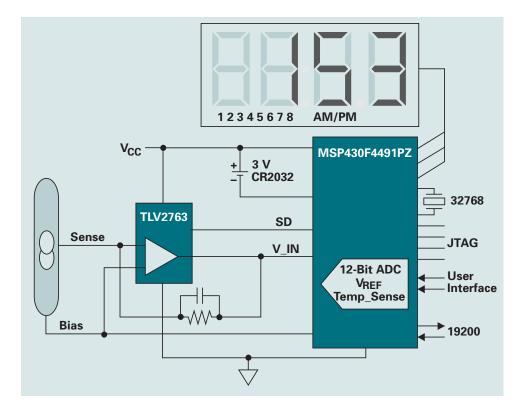
Design Example

To Know More

For detailed	information	about '	TI products:
--------------	-------------	---------	--------------

MSP430F43x/44x 16-Bit Ultra-Low-Power Microcontroller	13
TLV2763 1.8-V, Single-Supply Operational Amplifier	14
REF1112 1.25-V, 1-µA, 30-ppm/°C Max Shunt Voltage Reference	14
ADS1112 16-Bit ADC With Input Multiplexer	15
TPS60310 Single-Cell to 3.0/3.3-V, 20-mA Charge Pump	15
TRF6903 Single-Chip Multiband RF Transceiver	16
TMS320C55x™ Power-Efficient Fixed-Point DSPs	16

Modern handheld medical devices require a sensor interface, precision conversion circuit, flash MCU, user display, communication features and a power supply. In the past, to meet the conflicting electronics requirements of low power and high precision, handcrafted applicationspecific integrated circuit (ASIC) solutions were used. Glucose meter designers today are moving toward using off-the-shelf, ultra-lowpower, mixed-signal controllers with embedded analog to meet the power, precision, fast time-to-market and cost requirements.


This design implements a blood glucose measurement system with ultra-low power consumption and numerous features. The primary interface is a numeric LCD requiring just 1 μ A to 2 μ A when active. Additional features include user input buttons, an alert buzzer and a serial communication link. A typical block diagram is shown for a

modern glucose meter implementing all features using just two devices—the MSP430F449 ultra-low-power microcontroller and the TLV2763 amplifier with shutdown.

System designers indicate that glucose measurements can be taken in several ways, including optical or electrochemical methods. In electrochemical meters, a disposable biocatalyst test strip is used to measure the glucose content of a small blood sample. When the sample is applied, the test strip generates a signal that is amplified and measured by the operational amplifier. The operational amplifier's output is scaled to a range that can be measured by the MSP430's embedded 12-bit analog-to-digital converter (ADC). In addition to the test strip output current, measurement of temperature is also required. The chemical reaction of the test strip is temperature-sensitive. The temperature can be measured using the integrated temperature sensor in the MSP430F449's embedded 12-bit ADC.

These measurements are often logged and downloaded later to a PC for analysis by the user and the user's doctor. The data logging is a key reason to use flash memory. The MSP430 can be easily programmed insystem and by the system itself. Allocating 8 Kbytes of flash memory for data logging is adequate for 1000 measurements, each with an associated time stamp. The flash memory can be erased and reprogrammed 100,000 times, exceeding the life of the instrument.

All of these features can easily be implemented by glucose meter system designers using the 12-bit ADC, reference voltage, temperature sensor and hardware serial communication interface integrated on the

MSP430F43x/44x family of products. MSP430 also easily interfaces to TI's portfolio of high-performance analog, including a broad range of high-resolution data converters, precision amplifiers and power management products for complete design flexibility.

For more demanding applications that require higher-resolution ADCs, system designers will find that the ADS83xx and ADS11xx families offer an outstanding solution. Both families feature 16-bit resolution and ultra-low power consumption, and they are offered in some of the industry's smallest footprints available today. Additionally, both families support single-channel or multichannel requirements.

As with any portable device, power management is critical. To reduce power, the first task is to shut off analog circuits when not in use. Many designers often look for the lowest-power amplifier. While low power consumption is key, most important is the ability to shut down. The TLV276x will typically draw current in the 10-nA range in shutdown mode. Since the meter is used only three to five times a day, it is

Design Example and Featured Products

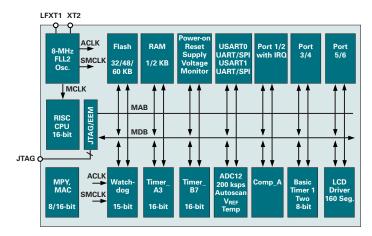
important to have the lowest current possible when the meter is in inactive mode.

Regarding the microcontroller, low standby-mode power consumption and fast wake-up times are critical. The MSP430F449 features a fastresponding, high-speed clocked system with a digitally controlled oscillator (DCO). This system starts up in less than 6 μ s to service requests as fast as possible and then returns to standby. This extends the time in inactive mode, resulting in total reduction in power consumption. The DCO can be used in conjunction with a 32-kHz watch crystal to provide a stable time base for an ultra-low-power embedded real-time clock. With an active CPU current of 280 μ A, the real-time clock function adds less than 25 nA to the overall system power budget.

TI's MSP430 microcontroller and high-performance analog portfolio provide exceptional performance/cost solutions featuring ultra-low power consumption and high-precision performance.

16-Bit Ultra-Low-Power Microcontroller MSP430F43x/44x

Get app reports and EVMs at: www.ti.com/msp430


The MSP430F43x/44x 16-bit mixed-signal microcontroller (MCU) family further improves the MSP430's industry-leading ultra-low-power flash memory technology—breaking the 1- μ A barrier. The MSP430F43x/44x delivers a standby mode of less than 800 nA typical, with a 32K oscillator, basic timer and LCD driver active. An "instant-on" digitally controlled oscillator (DCO) together with an integrated frequency lock loop (FLL) provides a stable, high-speed system clock in less than 6 μ s. This saves battery power by allowing the system to stay in standby longer and utilize modern event-driven programming techniques. In active mode, the MSP430F449 consumes only 280 μ A/MIPS at 2.2 V and can operate from 1.8 V to 3.6 V over full industrial temperature range. The MSP430F43x/44x family integrates mixed-signal peripherals that expand design possibilities.

Key Features

- Ultra-low power consumption:
 - $\circ\,$ Active mode: 280 μA at 1 MHz, 2.2 V $\,$
 - Standby mode: 0.7 μA
 - Off mode (RAM retention): 0.1 μA
- Wake-up from standby mode in 6 µs
- High-performance integrated analog and digital peripherals including 12-bit ADC, supply voltage supervisor, analog comparator, serial communication interface and hardware multiplier
- Two 16-bit PWM timers with multichannel capture/compare
- Integrated LCD driver for 160 segments
- Available in 80- or 100-pin quad flat pack

Applications

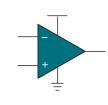
Handheld medical devices

MSP430F43x typical functional diagram.

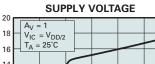
 \leftarrow

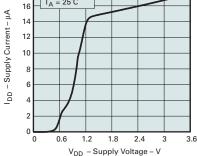
1.8-V, Single-Supply Operational Amplifier TLV2763

Get samples, datasheets and app reports at: www.ti.com/sc/device/TLV2763


The TLV276x single-supply operational amplifiers provide 500-kHz bandwidth from only 20 μ A while operating down to 1.8 V over the industrial temperature range (±1.8 V supplies down to ±0.9 V). The maximum recommended supply voltage is 3.6 V, which allows the devices to be operated from two AA or AAA cells. The devices have been characterized at 1.8 V (end of life of two AA or AAA cells) and at 2.4 V (nominal voltage of two NiCd/NiMH cells). The TLV276x family has rail-to-rail input and output capability, which is a necessity at 1.8 V.

Key Features


14


 \rightarrow

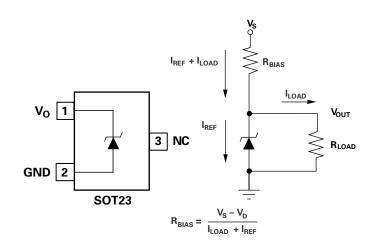
- Low supply voltage: 1.8 to 3.6 V
- Very low supply current: 20 µA (per channel)
- Ultra-low-power shutdown mode: I_{Q(SHDN)} = 10 nA/channel
- CMOS rail-to-rail input/output
- Input common-mode voltage range: -0.2 V to V_{DD} + 0.2 V
- Input offset voltage: 550 μV
- Wide bandwidth: 500 kHz
- Ultra-small packaging:
- 5- or 6-pin SOT-23 (TLV2760/1)
- 8- or 10-pin MSOP (TLV2762/3)

SUPPLY CURRENT

TLV2763 single-supply performance.

1.25-V, 1-μA, 30-ppm/°C Max Shunt Voltage Reference REF1112

Get samples, datasheets and app reports at: www.ti.com/sc/device/REF1112


The REF1112 is a two-terminal shunt reference designed for powerand space-sensitive applications. It features an operating current of just 1 μ A and is available in the SOT23-3 package.

Key Features

- Wide output current range: 1 μ A to 5 mA
- High initial accuracy: 0.2%
- Excellent specified drift performance: 30 ppm/°C (max) from 0°C to 70°C 50 ppm/°C (max) from -40°C to 85°C
- Micro-package: SOT23-3

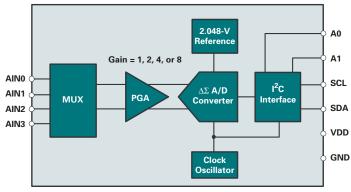
Applications

- Medical equipment
- Battery-powered instruments
- Calibration circuits
- Micropower current and voltage reference

Typical REF1112 shunt reference application.

16-Bit ADC With Input Multiplexer and Onboard Reference ADS1112

Get samples, datasheets and app reports at: www.ti.com/sc/device/ADS1112


The ADS1112 is a precision, continuously self-calibrating ADC with two differential or three single-ended channels. It uses an l^2C compatible serial interface and has two address pins that allow the
user to select one of the eight l^2C slave addresses.

Key Features

- Complete data acquisition system in the MSOP-10 and leadless QFNstyle packages
- Measurement from two differential channels or three single-ended channels
- I²C interface: eight addresses are pin selectable
- Onboard reference: 2.048 V ±0.05%, drift 5 ppm/°C
- Onboard PGA
- Onboard oscillator
- 16 bits, no missing codes
- INL: 0.01% of FSR max
- Continuous self-calibration
- Single-cycle conversion
- Programmable data rate: 15 SPS to 240 SPS
- Power supply: 2.7 V to 5.5 V
- Low current consumption: 240 µA

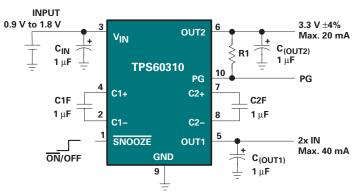
Applications

- Medical equipment
- Battery-powered instruments
- Smart transmitters
- Temperature measurement

ADS1112 block diagram.

Single-Cell to 3.0/3.3-V, 20-mA, Ultra-Low Quiescent Current Charge Pump TPS60310

Get samples, datasheets and app reports at: www.ti.com/sc/device/TPS60310


The TPS60310 is a high-efficiency step-up charge pump capable of delivering either 3.0 V or 3.3 V from a 0.9-V to 1.8-V input voltage (one alkaline, NiCd, or NiMH battery). It has an additional output capable of providing two times the input voltage. Requiring no inductors, the device requires as few as five capacitors. It has the unique ability to provide 2 mA of output current while in its snooze mode (2 μ A), thus providing a significant power savings to many ultra-low-power applications.

Key Features

- Regulated output voltage with up to 40-mA current from a 0.9-V to 1.8-V source
- High power-conversion efficiency, greater than 80%
- Snooze mode of 2 µA still capable of supplying 2-mA output current
- Additional output (dual output)
- Integrated supervisor (SVS)
- No inductors required, only five small capacitors

Applications

- MSP430 applications
- Medical instrumentation
- Portable measurement
- Metering applications
- Portable smartcard readers

Typical application.

Consumer/Personal Medical Devices

Featured Products

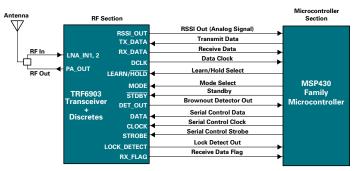
Single-Chip Multiband RF Transceiver TRF6903

Get datasheet at: www.ti.com/sc/device/TRF6903

The TRF6903 single-chip solution is a low-cost multiband FSK or OOK transceiver to establish a frequency programmable, half-duplex, bidirectional RF link. Intended for use in the North American and European 315-MHz, 533-MHz, 868-MHz and 915-MHz bands, the transceiver operates down to 2.2 V with low power consumption.

Key Features

16


 \rightarrow

- ISM-band frequencies: 315, 433, 868 and 915 MHz
- 2.2-V to 3.6-V operation
- Low power consumption
- FSK/OOK operation
- Integer-N synthesizer with fully integrated voltage-controlled oscillator (VCO)
- On-chip reference oscillator and phase-locked loop (PLL)
- Class-selectable power amplifier with 8-dBm typical output power
- Programmable brownout detector
- Clock recovery with integrated data-bit synchronizer and baud-rate selection
- Packaging: Low-profile 48-pin PQFP

Applications

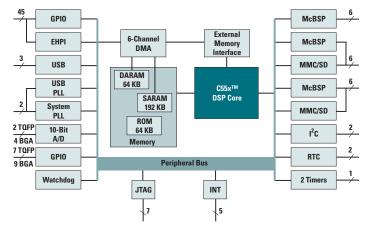
- Personal and portable measurement products
- Handheld medical diagnostics
- Battery-powered instruments
- Medical equipment

*Planned availability is June 2004.

System diagram for interfacing to the MSP430 microcontroller.

Power-Efficient Digital Signal Processors TMS320C55x[™] Fixed-Point DSPs

Get samples, datasheets and app reports at: www.ti.com/c55xdsps


TMS320C55x[™] DSPs offer the optimal combination of performance, peripheral options, small packaging and power efficiency in the industry. This combination gives designers an edge while designing applications such as handheld medical imaging devices. TI's C55x[™] DSPs offer power consumption as low as 0.33 mA/MHz and performance up to 600 MIPS.

Key Features

- Power consumption as low as 0.33 mA/MHz and performance up to 600 MIPS
- Active power: 65 to 194 mW
- C55x DSPs are 100% code-compatible with C5000[™] DSPs
- Video hardware extensions (DCT, motion estimation, pixel interpolation)
- McBSP
- USB 2.0, full-speed
- 16-bit HPI
- 6-channel DMA
- 16/32-bit EMIF
- ADC
- I²C
- MMC/SD
- UART
- Special instructions: variable-length (8- to 48-bit) instructions
- Packaging: MicroStar BGA™

Applications

- · Feature-rich, miniaturized personal and portable products
- Handheld medical diagnostics
- Hearing aids
- Voice/speech recognition

The C55x[™] DSP core is driving digital applications ranging from portable Internet appliances to high-speed wireless to power-efficient infrastructure.

Biophysical Monitoring

17

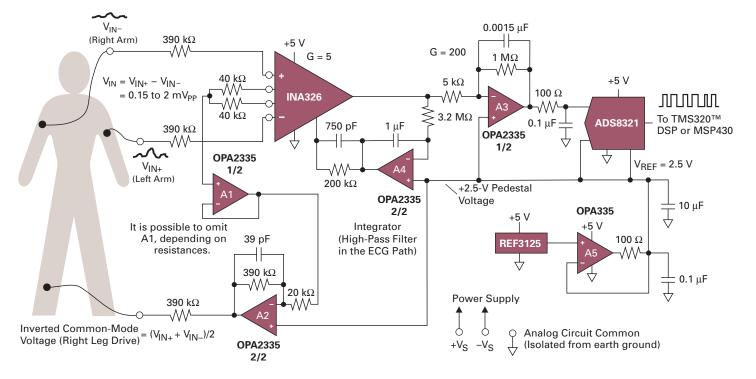
÷

Electrocardiogram (ECG) Front End

→ To Know More

For detailed information about TI products:	
INA326 Auto-Zero, Rail-to-Rail I/O Instrumentation Amplifier	21
OPA335 Auto-Zero, Single-Supply CMOS Op Amp	21
ADS8320/21/25 High-Speed, 16-Bit, Micropower ADCs	22
TMS320C2000™ Embedded Digital Signal Controller	22
TMS320C55x [™] Power-Efficient Fixed-Point DSPs	23

Biophysical Monitoring Overview


The human medical data acquisition system, in particular the patient monitoring system, presents the challenge to designers of measuring very small electrical signals in the presence of much larger commonmode voltages and noise. Front-end amplifiers perform the essential conditioning that complements downstream digital processing, which in turn refines the measurement and communicates with other systems. Biophysical measurements include electrical and mechanical signals for general monitoring, diagnostic and scientific purposes both in clinic and non-clinic environments. Successfully meeting the signal acquisition challenge requires system designers to have knowledge of the signal source, good design practice and ICs with appropriate characteristics, features and performance.

Signal Acquisition Challenges

The action potential created by heart wall contraction spreads electrical currents from the heart throughout the body. The spreading electrical

currents create different potentials at different points on the body, which can be sensed by electrodes on the skin surface using biological transducers made of metals and salts. This electrical potential is an AC signal with bandwidth of 0.05 Hz to 100 Hz, sometimes up to 1 kHz. It is generally around 1-mV peak-to-peak in the presence of much larger external high frequency noise plus 50-/60-Hz interference normal-mode (mixed with the electrode signal) and common-mode voltages (common to all electrode signals).

The common-mode is comprised of two parts: 50- or 60-Hz interference and DC electrode offset potential. Other noise or higher frequencies within the biophysical bandwidth come from movement artifacts that change the skin-electrode interface, muscle contraction or electromyographic spikes, respiration (which may be rhythmic or sporadic), electromagnetic interference (EMI), and noise from other electronic devices that couple into the input. Some of the noise can be cancelled with a high-input-impedance instrumentation amplifier (INA), like the INA326 or INA118, which removes the AC line noise common to both inputs and amplifies the remaining unequal signals present on the inputs; higher INA common-mode rejection (CMR) will result in greater rejection. Because they originate at different points on the body, the left-arm and right-arm ECG signals are at different voltage levels and are amplified by the INA. To further reject 50- and 60-Hz noise, an operational amplifier deriving common-mode voltage is used to invert the commonmode signal and drive it back into the patient through the right leg using amplifier A2. Only a few microamps or less are required to achieve significant CMR improvement and stay within the UL544 limit.

Three ECG electrodes connected to patient using CMOS devices with 5-V single supply. This circuit will operate on a 3.3-V supply.

Electrocardiogram (ECG) Front End

Supply Voltage

18

 \rightarrow

As in most other applications, the system supply voltage in biophysical monitoring continues the trend toward low, single-supply levels. While bipolar supplies are still used, 5-V systems are now common and trending to single 3.3-V supplies. This trend presents a significant challenge for the designer faced with at least a 300-mV DC electrode potential and emphasizes the need for a precision signal-conditioning solution. While the following discussion concentrates on the single supply design, the principles involved apply to bipolar designs as well. A list of recommended single and bipolar supply devices can be found below.

Frequency Response

Standard -3-dB frequency bandwidth for patient monitoring is 0.05 Hz to 30 Hz, while diagnostic grade monitoring requires 0.05 Hz to 100 Hz or more. ECG front ends must be AC coupled to remove artifacts from the electrode offset potential.

Electrode Potential

Because electrode potential can in practice reach ± 500 mV, eliminating the effects of electrode potential by AC coupling is essential. A DC restorator amplifier in a feedback configuration nulls out the DC offset.

If the left arm DC offset is +300 mV and the right arm electrode is 0-V DC, the differential input voltage is 300 mV. Because the instrumentation amp has a gain of 5, 1.5 V appears at the output of the instrumentation amp. With a gain of 50 or more, the output amplifier would try to drive the signal up to 75 V but never does because a feedback integrator applies an equal negative voltage to the reference point. Using this linear summing effect, the electrode offset is cancelled. The result of this DC restorator is to turn the original DC-coupled amplifier into an AC-coupled amplifier. With the DC normal-mode voltage removed, the output stage can amplify the AC ECG signal without becoming saturated.

Instrumentation Amplifier Requirements

- Stability in low gain (G = 1 to 10)
- High common-mode rejection
- Low input bias current (I_B)
- Good swing to the output rail
- Very low offset and drift

Operational Amplifier Requirements

- Low noise in high gain (Gain = 10 to 1000)
- Rail-to-rail output
- Very low offset and drift

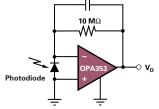
Device	Recomme	ndations
201100		luuuuuu

D	December de d Decim	
Device Type	Recommended Devices	Device Characteristics
5-V Single Supply		
Instrumentation Amplifiers	INA326	110-dB CMRR at G = 100, 100-µV max offset, 0.4-µV/⁰C max drift, RRIO, MSOP package
	INA321	94-dB CMRR, 500-μV max offset, 7-μV/°C drift, 40-μA supply current, RRO, MSOP package
Operational Amplifiers	0PA335	5-μV max offset, 0.05-μV/°C max drift, 350-μA max supply current, SOT23 package
	0PA336	125-µV max offset, 1.5-µV/ºC drift, 32-µA max supply current, SOT23 package
Data Converters	ADS8325	16-bit, 100-kSPS, micropower serial output ADC, operates on 2.7 V to 5.5 V, 3mm x 3mm QFN
	ADS1255, ADS1256	24-bit, 30-kSPS ADC, high effective resolution and fast conversion rate
	ADS1252	24-bit, 41-kSPS ADC, world's fastest 24-bit ADC
Voltage Reference	REF31xx	0.2% max initial accuracy, 15 ppm/°C max drift, SOT23 package (1.25, 2.048, 2.5, 3.0, 3.3, 4.096 V)
	REF02	5-V precision voltage reference, 0.2% initial accuracy max, 10 ppm/°C max drift, excellent line/load
		regulation, low noise, SO-8 package
	REF102	10-V ultra-precision voltage reference, 0.05% accuracy, 2.5ppm/°C max drift, excellent stability and
		line/load regulation, operation to 36 V, SO-8 package
Digital Signal Processor	TMS320C5000™ DSP	Power-efficient, high-performance DSPs
Power Management	bq24703	Multichemistry battery charger
Bipolar Supplies		
Instrumentation Amplifiers	INA128	120-dB min CMRR, 5-nA max bias current, 50-μV max offset, 0.5-μV/°C max drift, 700-μA supply current
	INA118	110-dB min CMRR, 5-nA max bias current, 50-μV max offset, 0.5-μV/°C max drift, 350-μA supply current
	INA121	106-dB CMRR, 4-pA max bias current, 2-μV/°C max drift, 200-μV offset, 0.001% max non-linearity
	INA126/dual INA2126	Low power: 175-µA/channel supply current, 3-µV/°C max drift, 250-µV max offset
Operational Amplifiers	OPA130 for Integrator	20-pA max bias current, 90-dB min CMRR, 120-dB min open loop gain, 1-MHz bandwidth
	OPA277 for Right Leg Drive	Very low voltage offset and drift, wide bandwidth, low noise
Data Converters	ADS8342	4-channel, 16-bit NMC, 250-kSPS, ±2.5-V input range, parallel interface in TQFP-48 package
	ADS7809UB	16-bit NMC, 100-kSPS, 100-dB SFDR, ±10-V input range on 5-V single supply, SPI serial interface
	DDC112	Dual current input, wide dynamic range, charge digitizing, 20-bit ADC
Digital Signal Processor	TMS320C5000 DSP	Power-efficient, high-performance DSPs
Power Management	TPS40500	DC/DC controller with 8-V to 40-V input voltage range
i ottor munugomont	TPS546xx	6-A DC/DC converter with onboard power FETs
	11 00 00 00 00 00 00 00 00 00 00 00 00 0	CA Dobb converter with onboard power rens

Biophysical Monitoring

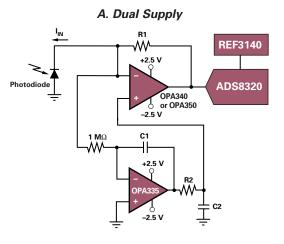
Pulse Oximetry

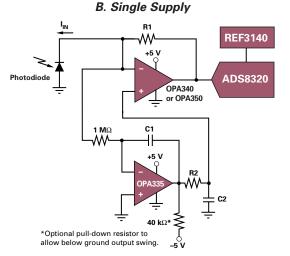
Overview

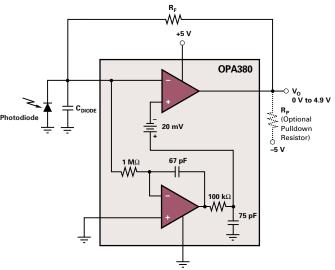

The pulse oximeter measures blood oxygenation by sensing the infrared and red light absorption properties of deoxygenated and oxygenated hemoglobin.

It is comprised of a sensing probe attached to a patient's earlobe, toe or finger that is connected to a data acquisition system for calculation and display of oxygen saturation level, heart rate and blood flow. Light sources, typically light-emitting diodes, shine visible red and infrared light. Deoxygenated hemoglobin allows more infrared light to pass through and absorbs more red light; highly oxygenated hemoglobin allows more red light to pass through and absorbs more infrared light. The oximeter senses and calculates an amount of light at those wavelengths proportional to the oxygen saturation (or desaturation) of the hemoglobin.

Because of the use of light in the absorbance measurement, the designer needs a true "light-to-voltage" conversion using current as the input signal. The classes of photodiode amplifiers suitable for pulse oximetry applications are the classical resistor-feedback transimpedance amplifier and the capacitor-feedback switched integrator. In either amplifier configuration, the resulting output voltage is read by an analog-to-digital converter and serialized for MSP430 microcontroller or TMS320[™] DSP for processing.

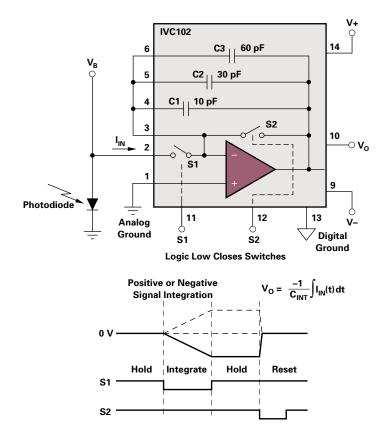

Signal Acquisition Challenges


The resistor-feedback amplifier circuit shown at right is the most common bioelectric transimpedance circuit. With the amplifier used in the inverting configuration, the light shining on a photodiode produces a small current that flows to the amplifier summing junction and through the feedback


resistor. Given the very large feedback resistor value, this circuit is extremely sensitive to changes in light intensity. For example, an input light signal of just 0.001 μW can produce a full-swing output.

Depending on design requirements, it can be very useful to achieve output swing down to or below ground. The auto-zero transimpedance amplifier configurations shown in the next column will allow swing to ground in Figure A and very close to ground in Figure B. A pull-down resistor tied to -5 V will allow swing slightly below ground to minimize errors as the output gets very close to zero volts.

TI's new OPA380 is a monolithic combination of the high-speed OPA355 and auto-zero OPA335 amps. It offers 90-MHz gain bandwidth product and performs well as a 1-MHz transimpedance amplifier with extremely high precision (25- μ V maximum offset and 0.1- μ V/°C maximum drift).



Pulse Oximetry

20

 \rightarrow

Depending on design requirements, the switched integrator can be a very effective solution. TI's IVC102 does not have the thermal noise of a feedback resistor and does not suffer from stability problems commonly found in transimpedance amps with a large feedback resistor. Using one photodiode with two IVC102s will eliminate dark current and ambient light errors, as errors common to both can be subtracted. Additionally, IVC102 allows for synchronized sampling at an integer multiple of AC line frequency, giving extremely high noise rejection. Transimpedance gain can easily be changed by extending or shortening integration time with switch S2.

Device Recommendations

Transimpedance Amplifier Requirements

- · Low input bias current over temperature range of interest
- Low input capacitance relative to photodiode capacitance
- High gain bandwidth product
- · Low voltage noise
- For maximum precision, low offset drift over temperature
- For single-supply systems:
 - Rail-to-rail input (including 0 V) and output if operating the photodiode in photovoltaic (zero bias) mode
 - Rail-to-rail output only if operating the photodiode in photoconductive mode (biased)
 - Shutdown and/or low supply current if battery-powered system

Design Hints

A small (< 1-pF) capacitor in the feedback loop (C_F) will control gainpeaking caused by the diode capacitance. Noise (voltage-output fluctuation) is caused by resistor noise, amplifier and current noise, and environmental noise pickup (e.g., 50- or 60-Hz line noise). To minimize noise in the circuit, the designer should choose a low-noise amplifier, select the largest practical feedback resistor, RF shield the amplifier inputs, include low-pass filtering and use good PCB layout technique.

If the photodiode shunt resistance is much larger than that of the feedback resistor, offset voltage is not significant. If offset voltage stability is paramount, an auto-zero solution including the OPA335 is best.

To achieve the highest levels of precision, system designers should choose the new OPA380. Designed to meet exacting transimpedance application requirements, the OPA380 provides an unbeatable combination of speed (85-MHz GBW, over 1-MHz transimpedance bandwidth) and precision (25- μ V max offset, 0.1- μ V/°C drift, and low 1/f noise). A discrete alternative is to use OPA350 or OPA355, adding the OPA335 in the integrators-stabilized transimpedance configuration for circuits requiring low offset and drift. Note that the addition of the OPA335 integrator to a basic transimpedance amplifier will also reduce its very low-frequency noise.

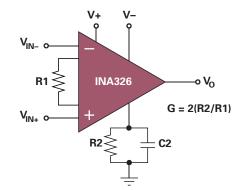
Device Type	Recommended Devices	Device Characteristics
Transimpedance Amplifier	0PA380	90 GBW, over 1-MHz transimpedance BW, 25-µV max offset, 0.1-µV/°C max drift, MSOP package
	IVC102	Precision switch integrator transimpedance amp
Operational Amplifiers	0PA335 (5 V)	5-µV max offset, 0.05-µV/°C max drift, 350-µA max supply current, SOT23 package
	0PA735 (12 V)	5-μV max offset, 0.05-μV/°C max drift, 750-μA max supply current, SOT23 package, 2.7-V to 12-V operation
	0PA336	125-μV max offset, 1.5-μV/°C drift, 32-μA max supply current, SOT23 package
	0PA350	500-μV V _{0S} , 38-MHz, 2.5-V to 5-V supply
	0PA353	High-speed single-supply rail-to-rail MicroAmplifier™ series
	OPA363/364	1.8-V high CMR, RRIO op amp with shutdown
	0PA703	12-V, CMOS, rail-to-rail I/O op amp
	0PA725	Very low noise, high-speed 12-V CMOS op amp
Data Converter	DDC112	Dual current input, wide dynamic range, charge digitizing, 20-bit ADC

Biophysical Monitoring

Featured Products

Auto-Zero, Rail-to-Rail I/O Instrumentation Amplifier INA326

Get samples, datasheets, app reports and EVMs at: www.ti.com/sc/device/INA326


The INA326 is a true single-supply instrumentation amplifier with very low DC errors and input common-mode range that extends beyond the positive and negative rails.

Key Features

- Precision
 - Low offset: 100 μV (max)
 - $\circ\,$ Low offset drift: 0.4 $\mu V/^{\circ}C$ (max)
- True rail-to-rail I/O
 - Input common-mode range: 20 mV beyond rails
 - Wide output swing: Within 10 mV of rails
 - Supply range: Single +2.7 V to +5.5 V
 - High CMRR: 110 dB at Gain = 100
- Simple gain setting
- 125°C version: INA337
- Packaging: MSOP-8

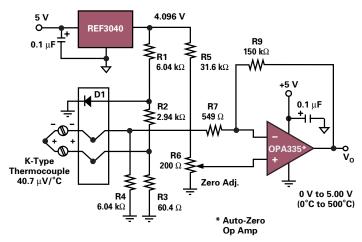
Applications

- Patient monitor analog front end
- Wide dynamic-range sensor measurement
- High-resolution data acquisition system

INA326 block diagram.

Auto-Zero, Single-Supply CMOS Op Amp OPA335

Get samples, datasheets and app reports at: www.ti.com/sc/device/OPA335


The OPA335 offers the ultimate combination of DC precision and low power consumption. It is offered in the small SOT23 package and consumes a maximum quiescent current of just 350 μ A. In addition to having ultra-low voltage offset and drift, the OPA335 has significantly better bandwidth and lower 1/f noise than previous auto-zero designs.

Key Features

- 5-µV max voltage offset
- $0.05-\mu V/^{\circ}C$ max drift
- 2-MHz gain bandwidth
- Low 1/f noise
- 350-µA max quiescent current
- 12-V version: OPA735 (suitable for ±5-V supplies)
- Packaging: SOT23

Applications

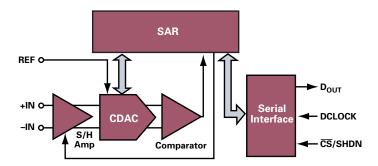
- Patient monitor signal amplification
- Right leg device
- Precision general-purpose signal conditioning

Typical OPA335 temperature-measurement application.

High-Speed, 16-Bit, Micropower Sampling ADCs ADS8320, ADS8321, ADS8325

Get samples, datasheets, app reports and EVMs at: www.ti.com/sc/device/PARTnumber (Replace PARTnumber with ADS8320, ADS8321 or ADS8325)

The ADS8320/21/25 are 16-bit sampling ADCs with guaranteed specifications over a 2.7-V to 5.5-V supply range (4.75-V to 5.25-V supply range for ADS8321). The devices require very little power even when operating at the full 100-kSPS data rate. At lower data rates, the devices' high speed enables them to spend most of their time in the power-down mode.


Key Features

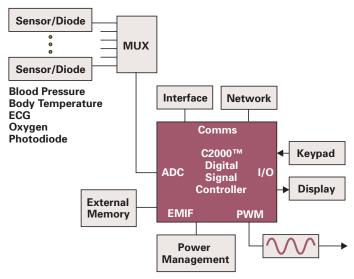
 \rightarrow

- 100-kSPS sampling rate (ADS8320, ADS8321)
- Micropower:
 - 1.8 mW at 100 kSPS and 2.7 V (ADS8320)
 - 0.3 mW at 10 kSPS and 2.7 V (ADS8320)
 - 4.5 mW at 100 kSPS (ADS8321, ADS8325)
 - 1 mW at 10 kSPS (ADS8321, ADS8325)
- Power down: 3 µA max (ADS8320, ADS8321)
- Pin-compatible to ADS7816 and ADS7822 (ADS8325 also with ADS8320)
- Serial (SPI/SSI) interface
- Packaging: MSOP-8

Applications

- Battery-operated systems
- Remote and isolated data acquisition
- Simultaneous sampling, multichannel systems
- Industrial controls
- Robotics
- Vibration analysis

ADS8325 block diagram.


C2000[™] Embedded Digital Signal Controller TMS320C2000[™]

Get app reports and EVMs at: www.ti.com/dmc

With a combination of integrated peripherals, extensive base code, application software and a variety of package types, the C2000[™] embedded digital signal controller is the best choice for many medical instrumentation systems.

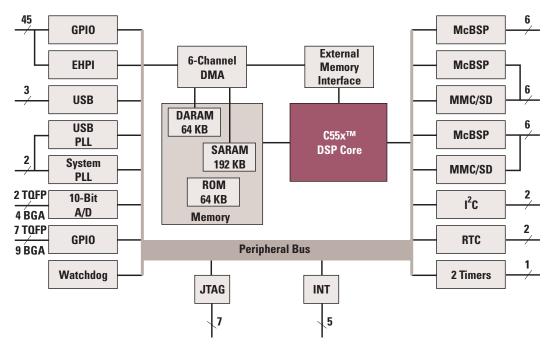
TMS320C28x[™] Benefits

- Truly efficient C/C++ engine
- · Real-time general-purpose processing and debugging
- Software-programmable DSP architecture for math-intensive algorithms
- Microcontroller-like interrupt-based events
- Microcontroller-like peripheral integration
- Field reprogrammable systems

Block diagram of typical medical instrumentation applications.

Power-Efficient Digital Signal Processors TMS320C55x[™] Fixed-Point DSPs

Get samples, datasheets and app reports at: www.ti.com/c55xdsps


TMS320C55x[™] DSPs offer the optimal combination of performance, peripheral options, small packaging and power efficiency in the industry. This combination gives designers an edge while designing applications such as handheld medical imaging devices. TI's C55x[™] DSPs offer power consumption as low as 0.33 mA/MHz and performance up to 600 MIPS.

Applications

- Feature-rich, miniaturized personal and portable products
- Handheld medical diagnostics
- Hearing aids
- Voice/speech recognition

Key Features

- Power consumption as low as 0.33 mA/MHz and performance up to 600 MIPS
- Active power: 65 to 194 mW
- C55x DSPs are 100% code-compatible with C5000™ DSPs
- Video hardware extensions (DCT, motion estimation, pixel interpolation)
- McBSP
- USB 2.0, full-speed
- 16-bit HPI
- 6-channel DMA
- 16/32-bit EMIF
- ADC
- 1²C
- MMC/SD
- UART
- Special instructions: variable-length (8- to 48-bit) instructions
- Packaging: MicroStar BGA™

The C55x[™] DSP core is driving digital applications ranging from portable Internet appliances to high-speed wireless to power-efficient infrastructure.

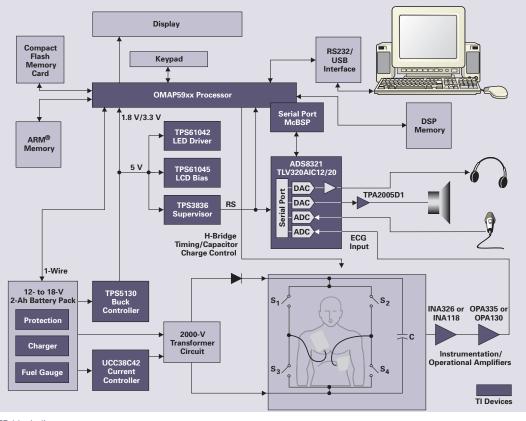
23

Design Example

→ To Know More

For detailed information about TI products:

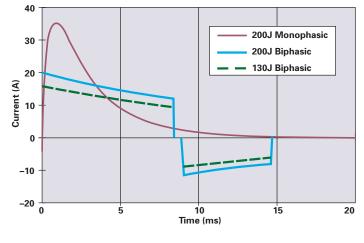
TLV320AIC20 Low-Power, 16-Bit, 26-kSPS Dual-Channel Codec25OMAP5910/12 OMAP™ Processors for Portable Medical Devices26UCC38C4x Current-Mode PWM Controllers26MSC1210 Lowest-Noise Precision Data-Acquisition SoC27REF31xx 15-ppm/°C Max, 100-µA, SOT23-3 Voltage Reference27		
UCC38C4x Current-Mode PWM Controllers26MSC1210 Lowest-Noise Precision Data-Acquisition SoC27	TLV320AIC20 Low-Power, 16-Bit, 26-kSPS Dual-Channel Codec	25
MSC1210 Lowest-Noise Precision Data-Acquisition SoC 27	OMAP5910/12 OMAP™ Processors for Portable Medical Devices	26
	UCC38C4x Current-Mode PWM Controllers	26
REF31xx 15-ppm/°C Max, 100-µA, SOT23-3 Voltage Reference 27	MSC1210 Lowest-Noise Precision Data-Acquisition SoC	27
	REF31xx 15-ppm/°C Max, 100-µA, SOT23-3 Voltage Reference	27


The automated external defibrillator (AED) is a highly sophisticated microprocessor-based device that monitors, assesses and automatically treats patients with life-threatening heart rhythms. It captures ECG signals from the therapy electrodes, runs an ECG-analysis algorithm to identify shockable rhythms, and then advises the operator about whether defibrillation is necessary. A basic defibrillator contains a high-voltage power supply, storage capacitor, optional inductor and patient electrodes (see block diagram). It develops an electrical charge in the capacitor to a certain voltage, creating the potential for current flow. The higher the voltage, the more current can potentially flow. The AED outputs audio instructions and visual prompts to guide the operator through the defibrillation procedure. In a typical defibrillation sequence, the AED provides voice prompts to instruct the user to attach the patient electrodes and starts acquiring ECG data. If the AED analyzes the patient's ECG and detects a shockable rhythm, the capacitor is charged according to energy stored in the capacitor, $W_c = \frac{1}{2}CV_c^2$; and capacitor voltage, $V_{c(t)} = V_{c(0)}e^{-t/RC}$, where R = R(lead) + R(chest).

Then, following the instructions, the operator presses the shock button to deliver the high-voltage pulse; and current begins flowing through the body to depolarize most of the heart cells, which often re-establishes coordinated contractions and normal rhythm. The amount of flowing current is determined by the capacitor and body impedance. The accompanying graph shows the level of current and the length of time the current flows through the body.

Many jurisdictions and medical directors also require that the AED record the audio from the scene of a cardiac arrest for post-event analysis. All AEDs include a means to store and retrieve patient ECG patterns.

The front-end signals of the AED come from the ECG electrodes placed on the patient, which requires an instrumentation amplifier to amplify its very small amplitude (<10 mV). The instrumentation amplifiers INA118/128/326 are designed to have:


- capability to sense low-amplitude signals from 0.1 mV to 10 mV,
- very high input impedance (>5 M Ω),
- very low input leakage current (<1 μA),
- flat frequency response of 0.1 Hz to 100 Hz and
- high common-mode rejection ratio (CMRR) (>100 dB).

AED block diagram.

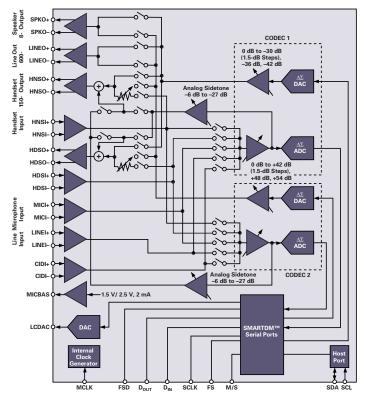
Design Example and Featured Products

The other front-end signal of the AED is the microphone input for recording the audio from the scene of a cardiac arrest. Both ECG and microphone input are digitized and processed by a DSP. Most AED designs use a 16-bit processor and therefore work well with 16-bit ADCs to digitize ECG and voice input. The amplified ECG signal has a bandwidth of 0.1 Hz to 100 Hz and requires a minimum SNR of 50 dB. The audio recording/playback signal typically has a bandwidth of 8 kHz and requires a minimum SNR of 65 dB. The microphone input also needs to be amplified with a maximum programmable gain of 40 dB. The AED can have synthesized audio instruction with volume control output to either the headphone speaker or the 8- Ω speaker. System designers will find that the TLV320AIC20 makes the AED front-end digitization very easy and simple because it integrates two ADCs, two DACs, a microphone amplifier, a headphone driver and an 8- Ω driver with volume control; and it can be gluelessly interfaced to a DSP.

Typical AED drive current.

Low-Power, Programmable 16-Bit, 26-kSPS Dual-Channel Codec TLV320AIC20

Get datasheets, app reports and EVMs at: www.ti.com/sc/device/TLV320AIC20


The TLV320AIC20 is a low-cost, low-power, highly integrated, highperformance, dual voice codec designed with new technological advances. It features two 16-bit ADC channels and two 16-bit DAC channels, which can be connected to a handset, headset, speaker, microphone or a subscriber line via a programmable analog crosspoint. The TLV320AIC20's SMARTDM™ serial port optimizes the multichannel buffered serial port (McBSP) operation of the DSP.

Key Features

- Two 16-bit oversampling $\Delta\Sigma$ ADCs
- Two 16-bit oversampling $\Delta\Sigma$ DACs
- Programmable sampling rate up to 26 kSPS with IIR/FIR on chip
- Support maximum master clock of 100 MHz
- Built-in functions:
 - Analog and digital sidetone
 - Anti-aliasing filter (AAF)
 - Programmable I/O gain control (PGA)
 - Microphone, handset, headset amplifiers
 - \circ 8- Ω speaker driver
 - $\circ\,$ Power management with hardware and software power-down modes to 30 μW
- 81-dB SNR for ADC and 78-dB SNR for DAC over 13-kHz BW
- Fully compatible with TI TMS320C54x[™] DSP power supplies:
 - $\circ~$ 1.65-V to 1.95-V digital core power
 - 2.7-V to 3.6-V analog
- Power dissipation:
 - $\circ~$ 20 mW at 3 V in standard operation
 - $\circ~$ 30 mW at 3 V with headset/handset drivers
- Packaging: 48-pin TQFP

Applications

- ECG/EKG digitizing
- Data over IP
- Voice recording/playback

TLV320AIC20 functional block diagram.

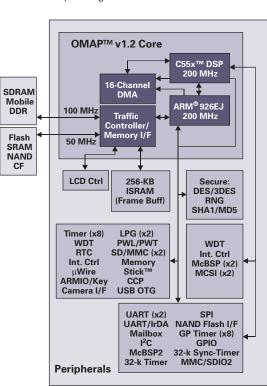
26

 \rightarrow

OMAP[™] Processors for Portable Medical Devices OMAP5910, OMAP5912

Get datasheets, app reports and EVMs at: www.ti.com/sc/device/OMAP5910 or www.ti.com/sc/device/OMAP5912

The dual-core OMAP59xx processor integrates a TMS320C55x[™] DSP core with a TI-enhanced ARM925 on a single chip for the optimal combination of application performance and low power consumption. This unique architecture offers an attractive solution to both DSP and ARM[®] developers by providing the low-power, real-time signal-processing capabilities of a DSP coupled with the command and control functionality of an ARM.


The OMAP59xx processors are ideal for designers working with devices that require embedded applications processing in a connected environment. The OMAP5912 is sampling today.

OMAP5912 Key Features

- OMAP™ V1.2
- 200-MHz ARM 926EJ
- 256-KB on-chip SRAMUSB-On-The-Go (OTG)
- USB-Un-The-Go (U /2.x DSP • (2) SD/MMC 4-bit
- 200-MHz C55x™ v2.x DSP
- 100-MHz MobileDDR bus (up to 1 GB)
- 50-MHz asynchronous bus (4 × 64 MB)
- 16-channel system DMA
- Compact camera interface
 Self-powered RTC
- Lead-free packaging

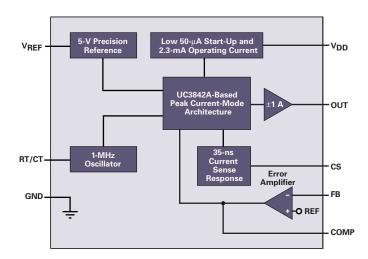
Applications

- Portable medical devices
- Asset and inventory management

OMAP5912 functional block diagram.

Next-Generation, Current-Mode PWM Controllers Offer Lowest Power and Improved Efficiency UCC38C4x

Get samples, datasheets and app reports at: www.ti.com/sc/device/PARTnumber


(Replace PARTnumber with UCC38C40, UCC38C41, UCC38C42, UCC38C43, UCC38C44 or UCC38C45)

Key Features

- Fastest overcurrent protection: 35-ns delay
- Low, 50-µA start-up current
- Low operating current: 2.3 mA at 50 kHz
- ±1-A peak output current
- Rail-to-rail output swings with 25-ns rise and 20-ns fall times
- ±1% initial trimmed 2.5-V error amplifier reference
- Trimmed oscillator discharge current
- Packaging: 8-pin DIP, 8-pin SOIC and 8-lead MSOP, which minimizes space

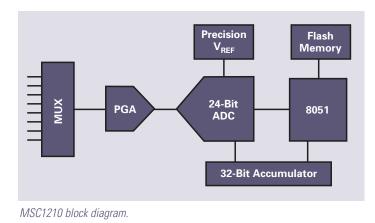
Applications

- Switch-mode power supplies
- DC-to-DC converters
- Board-mount power supplies
- Telecom, industrial, medical

UCC38C42 block diagram.

Lowest-Noise Precision Data-Acquisition System-On-a-Chip MSC1210

Get samples, datasheets, app reports and EVMs at: www.ti.com/sc/device/MSC1210Y2


The MSC1210 utilizes an enhanced 8051 core with on-chip Flash memory in combination with high-performance analog and peripherals to achieve unparalleled system performance. The integration of the analog and digital cores gives the ability to customize the device to meet specific requirements. It would be extremely costly and difficult to achieve this same level of flexibility and performance using multiple devices. The noise performance of the ADC is better than most stand-alone ADCs on the market and is significantly better than any comparable mixed-signal device available. The accuracy and drift of the V_{REF} is orders of magnitude better than other integrated peripherals, pushing the performance envelope of digital processing to among the best in the industry.

Key Features

- 24-bit ADC with no missing codes
- 22-bits effective resolution
- Eight differential/single-ended analog inputs
- 8051-compatible with up to 8-MIPS operation
- Up to 32-KB on-chip Flash program memory
- PGA 1 to 128
- Precision V_{REF}
- Packaging: 64-lead TQFP

Applications

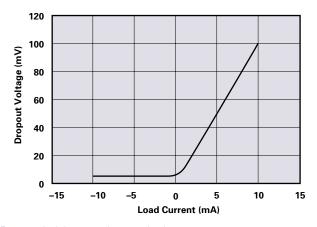
- Portable instrumentation
- Intelligent sensors
- Liquid/gas chromatography
- Weight scales

15-ppm/°C Max, 100-μA, SOT23-3 Series Voltage Reference REF31xx

Get samples, datasheets and app reports at: www.ti.com/sc/device/PARTnumber

(Replace **PARTnumber** with **REF3112**, **REF3120**, **REF3125**, **REF3130**, **REF3133** or **REF3140**)

The new REF31xx is a cost-effective precision voltage reference family. It is well-suited to a wide range of medical applications, particularly those requiring a combination of low power consumption and high precision. With six different output voltage options available, the REF31xx complements a wide range of data converters and converter input-signal levels.


Key Features

- 0.2% max accuracy
- 15-ppm/°C max drift (12 typ)
- ±10-mA output current
- 100-µA max supply current
- Packaging: SOT23-3

Applications

- Medical equipment
- Portable, battery-powered equipment
- Data acquisition systems
- Handheld test equipment
- Low power spot LDO

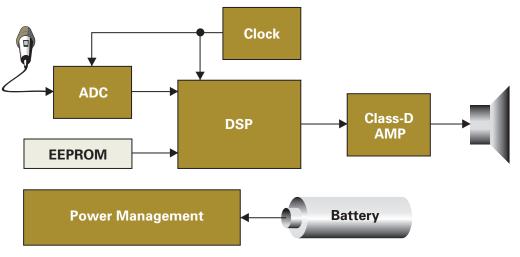
Product	Voltage (V)
REF3112	1.25
REF3120	2.048
REF3125	2.5
REF3130	3.0
REF3133	3.3
REF3140	4.096

REF3112 typical dropout voltage vs. load current.

27

Design Example

➡ To Know More	
For detailed information about TI products:	
AIC111 Micropower Audio Codec	30
TMS320C5402 Power-Efficient Fixed-Point DSP	30


Designers of hearing aids have stringent technological requirements. Hearing aids must be small enough to fit inside or behind one's ear, run with extremely low power, and introduce no noise or distortion. To achieve these requirements, current hearing aid devices consume less than 1 mA, operate at 1 V, and utilize less than 10 mm² of silicon area, which usually means two or three devices stacked on top of each other. The typical analog hearing aid consists of an amplifier with a non-linear input/output function and a frequency dependent gain. However, this analog processing suffers from a dependency on custom circuits, lack of programmability and a higher cost when compared to digital processing. Recent digital devices have reduced device costs and lowered power consumption compared to their analog counterparts. The greatest advantage offered by digital devices is their improved processing power and programmability, allowing hearing aids to be customized to a specific hearing impairment and environment. Instead of a simple sound amplification and adjustable frequency compensation, more complex processing strategies can be achieved to improve the sound quality presented to the impaired ear. Such strategies, however, require the sophisticated processing that a DSP can provide.

Typically, hearing loss is divided into two categories: conductive hearing loss and sensorineural hearing loss (SNHL). A conductive hearing loss occurs when the transduction of sound through the patient's outer or middle ear is abnormal, and SNHL occurs when either the sensory cells in the cochlea or the neural mechanisms higher in the auditory system fail.

With a conductive hearing loss, sound is not properly transmitted through the middle or outer ear. Because sound is primarily attenuated with a conductive loss, amplification of sound is essentially all that is required to restore near-normal hearing. No special signal processing is necessary, and traditional analog hearing aids work well. However, only 5% of those inflicted with some hearing loss are attributed to conductive losses alone.

SNHL includes hearing loss that is associated with aging, as well as noise-induced hearing loss and loss caused by drugs that are harmful to the auditory system. Most types of SNHL appear to be caused by a cochlear malfunction. SNHL is thought to be caused by damage to inner hair cells, outer hair cells or both. However, the underlying physiology is complicated. Different people will have different pathologies, which means that patients with identical audiograms will not necessarily have the same kind of hearing loss. Further, patients may even have differing kinds of impairment over different frequency ranges.

The effects of SNHL usually result in lack of input in some frequency channels, lack of sensitivity, and widened auditory filters. These effects, in turn, significantly impact the listener's perception of sound. Compared to listeners with normal hearing, listeners with SNHL will most likely experience loudness recruitment (the range of comfortable listening levels is compressed when compared with normal) and loss of frequency resolution, among other difficulties. These changes in sound perception have significant effects on a listener's ability to understand speech.

DSP-based hearing aid block diagram.

Design Example

Because SNHL is not simply a problem with the transmission of sound, but actually a problem with the processing of sound, this loss is not likely remedied through simple amplification—making garbled sounds louder does not make them clearer. Therefore, one potentially effective way to help an SNHL patient is through pre-processing the signal to enhance complex tonal patterns to compensate for the hearing loss.

It is unlikely that the various manifestations of SNHL will be remedied by the same optimal treatment. Processing of the sound can make speech more intelligible. However, the best processing algorithms will differ among individuals and may even change for one individual in different listening conditions such as a quiet room versus a noisy stadium. The key to accommodating these differences is hearing aid flexibility.

Traditionally, hearing aids have been amplifiers encased in custom earmolds fitted to the end user. The hearing aid system contains a microphone, an amplifier, a Zinc-Air battery and a receiver/speaker. Most of these amplifiers incorporate some kind of compression function, essentially a non-linear input/output relationship, that is used to compensate for loudness recruitment. Also, the gain in different frequency bands can be adjusted, and the number of frequency bands varies, but is usually two or three bands. Many of the newest aids are digitally programmable, which means that although they have analog signal processing, the processing is controlled by digital parameters that can be adjusted by an audiologist. In addition, some analog aids have several "programs," or sets of parameters, for different listening environments.

Some of the digital hearing aids in the market are ASICs with programmable coefficients. These ASICs provide a few sets of algorithms and several frequency bands that were not possible in typical analog devices. For example, the digital hearing aids have a combination of the following features: 2 to 14 frequency bands with adjustable crossover frequencies, one microphone, dual microphones for directional listening, background noise reduction, automatic gain control (AGC), speech enhancement, feedback reduction and loud sound protection. Overall, the amount of processing that can be done is impressive, especially when compared with the traditional processing in an analog aid.

A DSP-based hearing aid could expand software-controlled features to include: frequency shaping, feedback reduction, noise reduction, binaural processing, pinna and ear canal filtering, reverberation reduction and a provision for direct digital input from a digital telephone, TV or other audio devices. A programmable DSP also means that the hearing aid algorithms and features could be customized or changed without changing the hardware. Hearing-aid practitioners could economically experiment with available algorithms on a near real-time basis. It would even be possible to have user-selectable programs for switching to highly processed sound in difficult listening situations or back to traditional, less distorted sound in quiet environments.

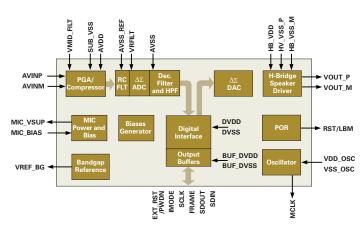
The block diagram on the previous page shows the primary elements for a DSP-based digital hearing aid. A typical digital hearing aid consists of three semiconductor die stacked on top of each other: EEPROM or non-volatile memory, a digital device and an analog device. Recent advances have allowed the integration of these modules into two or even one semiconductor die. Due to the battery's range of voltage from 1.35 V to 0.9 V, these devices are designed to operate at 0.9 V. Some implementations use power management to monitor battery voltage and alert the user when the battery is low and gracefully shut down the system when the voltage drops too low. The analog device normally includes the sigma-delta analog-to-digital converter, microphone preamplifier with compression input limiting function, remote control data decoder, clock oscillator and voltage regulator. The sigma-delta ADC typically has a frequency range of 20 kHz with 16 bits of resolution (14-bit linear). The digital device includes the DSP, logic support functions, programming interface and the output stage. The output stage is normally all digital and uses a pulse-width-modulated (PWM) output with Class D amplifiers that utilizes the speaker impedance to perform the analog-to-digital conversion.

Overall, the power consumption in current analog and digital hearing aids is approximately equal. Total current consumption is about 0.7 mA to 1.0 mA in the analog devices, whereas digital devices consume 0.5 mA to 0.7 mA. A 1.35-V zinc-air battery that provides around 30 to 65 mAh with a 50- μ A self-discharge current powers this system. The end-of-life voltage is about 0.9 V. Due to the increased amount of processing in the digital aids, however, a straight comparison of consumption between digital and analog aids is not entirely fair. Digital aids with processing abilities equivalent to those of analog aids would consume even less power.

 \leftarrow

Micropower Audio Codec AIC111

Get samples, datasheets, app reports and EVMs at: www.ti.com/sc/device/AIC111


The AIC111 is a micropower DSP- or microcontroller-compatible audio codec that provides a high-performance analog interface solution for applications such as personal medical devices—hearing aids, aural preprocessing—and low-power headsets. The AIC111 supports a 1.3-V CMOS digital SPI interface and includes an external microphone supply and bias, and low battery monitor and indicator.

Key Features

- 400-µW full power operation at 1.3-V supply
- ADC specifications:
 - Dynamic range: 87 dB
 - $\circ\,$ THD: 73dB at 100 Hz to 10 kHz
 - Sample rate: 40 kSPS
- Low noise PGA/gain compressor front end
- On-chip low-jitter oscillator generates all internal clocks and generates 5-MHz output DSP/microcontroller clock
- SPI interface supports TMS320VC540x, TMS320VC550x DSP protocol and MSP4330F12x microcontroller protocol
- H-bridge output stage for efficient output speaker drive
- 1.3-V nominal power supply
- Packaging: 32-lead QFN or FlipChip bare die

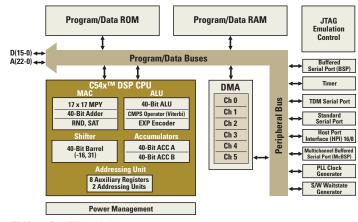
Applications

- Personal medical devices
- Low-power headset applications

AIC111 functional diagram.

Power-Efficient Digital Signal Processor TMS320C5402 Fixed-Point DSP

Get more information at: www.ti.com/dsp


TMS320C5402 DSP offers the power efficiency needed to sustain battery life for digital hearing aids. At 160 MHz, this processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set.

Key Features

- Advanced multibus architecture with three separate 16-bit data memory buses and one program memory bus
- 40-bit ALU
- Compare, select and store unit (CSSU) for the add/compare selection of the Viterbi operator
- Extended addressing mode for 8M × 16-bit maximum addressable external program space
- 16K × 16-bit on-chip RAM composed of two blocks of 8K × 16-bit on-chip dual-access program/data RAM
- Single-instruction-repeat and block-repeat for program code
- Conditional store instructions
- On-chip peripherals:
 - Software-programmable wait-state generator and bank-switching
 - On-chip programmable phase-locked loop (PLL) clock generator with internal oscillator or external clock source
 - $\circ~$ One 16-bit timer
 - 6-channel direct memory access (DMA) controller
 - Three multichannel buffered serial ports (McBSPs)
 - 8/16-bit enhanced parallel host/port interface (HPI8/16)
- Power consumption control with IDLE1, IDLE2 and IDLE3 instructions
- CLKOUT off control to disable CLKOUT
- Packaging: 144-pin BGA and 144-pin low-profile quad flatpack (LQFP)

Applications

• Digital hearing aids

UART and IR Encoder/Decoder Featured Products

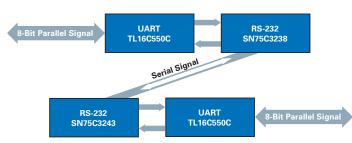
➔ To Know More

For detailed information about TI products:

TL16C550C/552A, TL16C750/752B Single and Dual UARTs	31							
TIR1000 Stand-Alone IrDA Encoder and Decoder								
TSB12LV32 General-Purpose Link-Layer Controller	32							
TSB12LV01B High-Speed Serial-Bus Link-Layer Controller	32							
TSB12LV21B (PCILynx-2) IEEE 1394 Link-Layer Controller	33							
TUSB2036, TUSB2046B, TUSB2077A USB 1.1 Hub Controller	33							
TUSB3410 USB-to-Serial Bridge	34							
PCI2050B 32-Bit, 66-MHz PCI-to-PCI Bridge	34							

Single and Dual UARTs TL16C550C, TL16C552A, TL16C750, TL16C752B

Get samples, datasheets and EVMs at: www.ti.com/sc/device/PARTnumber (Replace PARTnumber with TL16C550C, TL16C552A, TL16C750 or TL16C752B)


A wide portfolio of space-saving, performance-enhancing UARTS are pin-for-pin compatible with many leading UART manufacturers' devices. The TL16C550C is a 3.3-V/5-V single-channel, industry-standard UART that performs serial-to-parallel and parallel-to-serial data conversion. The TL16C552A enhanced, dual-channel device serves two serial input/output interfaces simultaneously and adds a bi-directional line printer port. The TL16C750 offers a 64-byte FIFO with 16- or 64-byte FIFO programmability. The TL16C752B is a high-performance, dual UART with a 64-byte FIFO capable of 2.9-Mbps data transfer.

Key Features

- Single-, dual- and quad-channel devices available
- Hardware and software auto-flow control
- Programmable sleep mode and low-power mode
- Industrial temperature range available
- Choice of 5-V and 3.3-V supply

Applications

Medical monitors and scanners

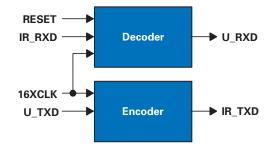
Typical UART system.

Texas Instruments provides complete interface solutions that empower you to differentiate your products and accelerate time to market. TI's expertise in high-speed, mixed-signal circuits, system-on-a-chip integration and advanced product development processes ensures you will receive the silicon, support tools, software and technical documentation to create and deliver the best products on time and at competitive prices.

Please read on to learn about TI's interface solutions for medical applications, including UARTs, IR encoder/decoder, 1394, USB and PCI bridges. More information on TI's line of interface solutions can be found at **interface.ti.com**

Stand-Alone IrDA Encoder and Decoder TIR1000

Get samples, datasheets, app reports and EVMs at: www.ti.com/sc/device/TIR1000


The TIR1000 serial infrared (SIR) encoder/decoder is a CMOS device which encodes and decodes bit data in conformance with the IrDA specification. A transceiver device is needed to interface to the photosensitive diode (PIN) and the light-emitting diode (LED). A UART is needed to interface to the serial data lines.

Key Features

- Adds infrared (IR) port to UARTs
- Compatible with IrDA and Hewlett Packard serial infrared (HPSIR)
- Provides 1200 bps to 115 kbps data rate
- Operates from 2.7 V to 5.5 V
- Provides simple interface with UART
- Decodes negative or positive pulses
- Available in two 8-terminal PSOP packages

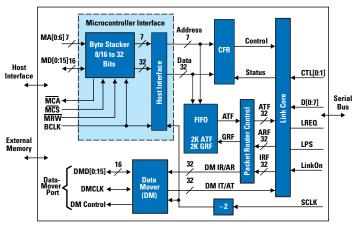
Applications

• Medical instrumentation

TIR1000 functional block diagram.

General-Purpose Link-Layer Controller TSB12LV32

Get samples, datasheets and app reports at: www.ti.com/sc/device/TSB12LV32


The TSB12LV32 (GP2Lynx) is a high-performance, general-purpose 1394a link-layer controller (LLC) that can transfer data between a host controller, the 1394 PHY-link interface and external devices connected to the local bus interface. The LLC provides the control for transmitting and receiving 1394 packet data between the microcontroller interface and the PHY-link interface via internal 2-KB FIFOs at rates up to 400 Mbps.

Key Features

- Compliant with IEEE 1394-1995 standards and P1394a supplement for high-performance serial bus
- Link core:
 - Transmits and receives correctly formatted 1394 packets
 - Supports asynchronous and isochronous data transfers
- Contains 2-KB asynchronous-transmit and 2-KB general-receive FIFOs
- PHY interface supports transfer speeds of 400, 200 or 100 Mbps
- Glueless interface to 68000 and ColdFire[®] microcontrollers/ microprocessors
- Programmable microcontroller interface with 8-bit or 16-bit data bus, multiple modes of operation including burst mode and clock frequency to 60 MHz
- 8-bit or 16-bit data-mover port (DM Port) supports isochronous, asynchronous and streaming transmit/receive from an unbuffered port at a clock frequency of 25 MHz
- Single 3.3-V supply operation with 5-V tolerance using 5-V bias terminals
- Packaging: High-performance 100-pin PZ

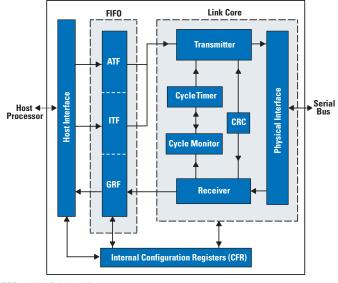
Applications

- Vision systems
- Instrumentation
- Command and control
- IDB-1394

TSB12LV32 block diagram.

High-Speed Serial-Bus Link-Layer Controller TSB12LV01B

Get samples, datasheets and app reports at: www.ti.com/sc/device/TSB12LV01B


The TSB12LV01B is an IEEE 1394-1995 high-speed serial-bus link-layer controller that allows for easy integration into an I/O subsystem. The TSB12LV01B provides a high-performance 1394 interface with the capability of transferring data between the 32-bit host bus, the 1394 PHY-link interface, and external devices connected to the local bus interface. The link-layer controller provides the control for transmitting and receiving 1394 packet data between the FIFO and PHY-link interface at rates of 100, 200 and 400 Mbps.

Key Features

- Compliant with IEEE 1394-1995 standards for high-performance serial bus
- Link core:
 - Transmits and receives correctly formatted 1394 packets
 - Supports asynchronous and isochronous data transfers
 - Contains asynchronous, isochronous, and general-receive FIFOs totaling 2 KB
- PHY interface supports transfer speeds of 100, 200 and 400 Mbps
- Host bus interface provides chip control with directly addressable registers and is interrupt-driven to minimize host polling
- Single 3.3-V supply operation with 5-V tolerance using 5-V bias terminals
- Packaging: 100-pin PZT for -40°C to 85°C operation

Applications

- Vision systems
- Instrumentation
- Command and control
- IDB-1394

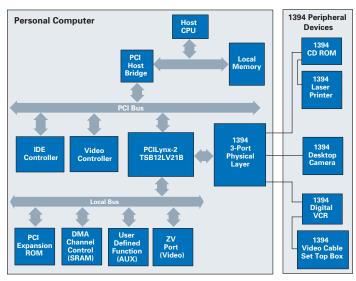
TSB12LV01B block diagram.

33

(PCILynx-2) IEEE 1394 Link-Layer Controller TSB12LV21B

Get samples, datasheets and app reports at:

www.ti.com/sc/device/TSB12LV21B


The TSB12LV21B (PCILynx-2) provides a high-performance IEEE 1394-1995 interface that can transfer data between the 1394 PHY-link interface, the PCI bus interface and external devices connected to the local bus interface. The 1394 PHY-link interface provides the connection to the 1394 physical layer device; it is supported by the onboard link-layer controller (LLC). The LLC provides the control for transmitting and receiving 1394 packet data between the FIFO and PHY-link interface at rates of 100, 200, and 400 Mbps.

Key Features

- IEEE standard for 1394-1995 and 1212-1991 compliant
- Supports IEEE 1394-1995 link-layer control
- PCI local bus specification Rev. 2.1 compliant
- 3.3-V core logic while maintaining 5-V-tolerant inputs
- Performs the function of 1394 cycle master
- Provides 4 Kbytes of configurable FIFO RAM

Applications

- 1394 embedded host controller
- 1394 PC host controller
- Instrumentation
- Command and control

Typical application featuring the TSB12LV21B.

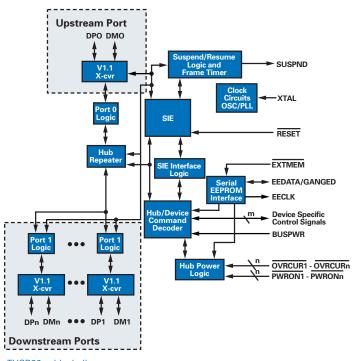
1394 and USB Featured Products

Industry-Leading USB 1.1 Hub Controller TUSB2036, TUSB2046B, TUSB2077A

Get samples, datasheets, app reports and EVMs at:

www.ti.com/sc/device/PARTnumber

(Replace PARTnumber with TUSB2036, TUSB2046B or TUSB2077A)


TI offers a variety of USB hub ICs for various applications that are fully compliant to the USB 1.1 specification and are on the USB-IF integrator's list.

Key Features

- Self- and bus-powered support
- USB suspend/resume operation support
- Custom VID and PID with external serial EEPROM
- · ESD filtering for babble, overcurrent, reset, bus-powered inputs
- TUSB2036: Pin-selectable configuration for 2 or 3 ports
- TUSB2046B: 4-port hub
- TUSB2077A: 7-port hub, self-powered for 7 ports and bus-powered for 4 ports

Applications

- Stand-alone hub boxes
- Motherboard
- Monitor with embedded control functions
- Embedded in peripheral (printer, scanners)
- All-in-one control unit

TUSB20xx block diagram.

³⁴ *Connectivity Products*

USB and PCI Bridge Featured Products

USB-to-Serial Bridge TUSB3410

Get samples, datasheets, app reports and EVMs at: www.ti.com/sc/device/TUSB3410

The TUSB3410 provides an easy way to move your serial-based legacy device to a fast, flexible USB interface by bridging between a USB port and an enhanced UART serial port. The TUSB3410 contains all the necessary logic to communicate with the host computer using the USB bus.

Key Features

- USB full-speed compliant: data rate of 12 Mbps
- 8052 microcontroller with 16 Kbytes of RAM that can be loaded from the host or from external onboard memory via an I²C bus
- Integrated, enhanced UART features including:
 - Programmable software/hardware flow control
 - Automatic RS-485 bus transceiver control, with and without echo
 - $\circ~$ Software-selectable baud rate from 50 to 921.6 kbaud
 - Built-in, two-channel DMA controller for USB/UART bulk I/O
- An evaluation module can jump-start your USB development, or you can use it as a complete USB-to-RS-232 converter

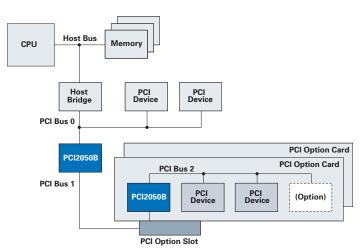
Applications

- Handheld meters
- Health metrics/monitors
- Any legacy serial device that needs to be upgraded to USB

TUSB3410 data flow.

32-Bit, 66-MHz PCI-to-PCI Bridge PCI2050B

Get samples and datasheets at: www.ti.com/sc/device/PCI2050B


The PCI2050B PCI-to-PCI bridge provides a high-performance connection path between two peripheral component interconnect (PCI) buses operating at a maximum bus frequency of 66 MHz. Transactions occur between masters on one and targets on another PCI bus, and the PCI2050B allows bridged transactions to occur concurrently on both buses.

Key Features

- Two 32-bit, 66-MHz PCI buses
- Compliant with PCI-to-PCI Bridge Spec, Rev 1.1
- 3.3-V core logic with universal PCI interfaces compatible with 3.3-V and 5-V PCI signaling environments
- Internal two-tier arbitration for up to nine secondary bus masters and supports an external secondary bus arbiter
- Ten secondary PCI clock outputs
- Burst data transfers with pipeline architecture to maximize data throughput in both directions
- CompactPCI hot-swap functionality
- 208-terminal PDV, 208-terminal PPM or 257-terminal MicroStar BGA™ package

Applications

- Server add-ons
- Data storage
- System control backplanes

Typical PCI2050B application.

35

Little Logic: Single-, Dual- and Triple-Gate Logic Devices Get samples, datasheets and app. reports at: www.ti.com/littlelogic

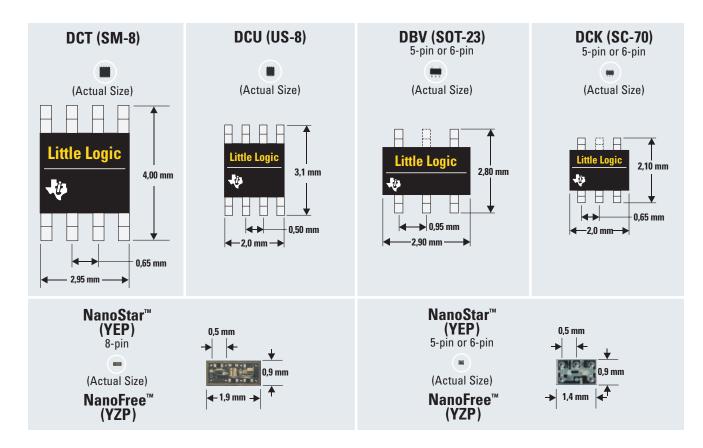
Little Logic offers voltage-range operating levels from 5.5-V all the way down to sub-1-V V_{CC} and can be utilized with AHC/T (5-V), LVC (3.3-V), and AUC (1.8-V) product families. Designs that require signal switching can take advantage of TI's CBT Little Logic families. The CBT devices provide bus switch solutions in a variety of options including CBTD for

5-V to 3.3-V translation and CBTLV for low-voltage operation. Little Logic provides packaging options in 5-, 6- and 8-pin packages, including NanoStar™ and NanoFree™, that are 70% smaller than the 5-pin SC-70 and 13% smaller than any other logic package available today.

Key Features

- 1.8-V to 5.5-V optimized performance
- Sub 1 V operation with AUC Little Logic
- World's smallest package NanoStar™
- Low-voltage bus switching (CBTLV)
- Pb-Free offering
- Packaging: See below

Applications


- Portable media device
- PDA/pocket PC
- Cellular phone
- Computing

Little Logic Performance Comparisons

	Operating	Optimized	Propagation	Output	Input	
	Voltage Range	Voltage	Delay, t _{pd}	Drive	Tolerance	I _{OFF}
Family	(V)	(V)	(ns) (typ)	(mA)	(V)	Protection
AUC	0.8 to 2.7	1.8	2.0	8	3.6	Yes
LVC	1.65 to 5.5	3.3	3.5	24	5.5	Yes
AHC	2.0 to 5.5	5.0	5.0	8	5.5	No
AHCT	4.5 to 5.5	5.0	5.0	8	5.5	No
CBT	4.5 to 5.5	5.0	0.25 ¹	2	5.5	Yes
CBTD	4.5 to 5.5	5.0	0.25 ¹	2	5.5	Yes
CBTLV	2.3 to 3.6	3.3	0.25 ¹	2	3.6	Yes

¹The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance). The value listed is a maximum.

²The FET switch has no output drive. The drive current at the output terminal is determined by the drive current of the device connected at the input terminal of the FET switch.

Space-saving Little Logic packages.

Amplifiers

Voltage-Controlled Amplifiers

				Power Per				
		Voltage Noise	Low-Noise	Channel	Gain Range	Analog Supply		
Device	Channels	(nV/√Hz)	Pre-Amplifier	(mW)	(dB)	(V)	Package	Price ¹
VCA2611	2	1	Yes	205	40	5.0	TQFP-48	9.97
VCA2616	2	1	Yes	205	40	5.0	TQFP-48	9.75
VCA2619	2	5.9	No	120	50	5.0	TQFP-32	7.97
VCA8613	8	1.5	Yes	88	40	3.0	TQFP-64	25.40

¹Suggested resale price in U.S. dollars in quantities of 1,000.

New devices are listed in **bold red**.

Difference Amplifiers

Davias	Description	Spec ¹ Temp	Ch.	Gain	Offset (µV)	Offset Drift (µV/°C)	CMRR (dB)	BW (MHz)	Output Voltage	Power Supply	I _Q (mA)	Package(a)	Price3
Device General P	Description	Range	UII.	Gain	(max)	(max)	(min)	(typ)	Swing (V) (min)	(V)	(max)	Package(s)	Price ³
			_		_		_	_			_		
INA132	Micropower, High-Precision	I	1, 2	1	250	5	76	0.3	(V+) – 1 to (V–) + 0.5	+2.7 to +36	0.185	DIP, SO	0.99
INA133	High-Precision, Fast	I	1, 2	1	450	5	80	1.5	(V+) - 1.5 to (V-) + 1	±2.25 to ±18	1.2	SOIC-8/-14	0.99
INA143	High-Precision, G = 10 or 1/10	I	1, 2	10, 1/10	250	3	86	0.15	(V+) - 1 to (V-) + 0.5	±2.25 to ±18	1.2	SOIC-8/-14	0.99
INA145	Resistor Programmable Gain	I.	1, 2	1-1000	1000	10 ²	76	0.5	(V+) - 1 to (V-) + 0.5	±1.35 to ±18	0.7	SOIC-8	1.40
INA152	Excellent Swing to Rail	I.	1	1	750	5	86	0.7	(V+) - 0.2 to (V-) + 0.2	+2.7 to +20	0.65	MSOP-8	1.10
INA154	High-Speed, Precision, G = 1	I	1	1	750	20	80	3.1	(V+) - 2 to (V-) + 2	±4 to ±18	2.9	SOIC-8	0.99
INA157	High-Speed, $G = 2 \text{ or } 1/2$	I	1	2, 1/2	500	20	86	4	(V+) - 2 to (V-) + 2	±4 to ±18	2.9	SOIC-8	0.99
Audio													
INA134	Low Distortion: 0.0005%	I	1, 2	1	1000	22	74	3.1	(V+) - 2 to (V-) + 2	±4 to ±18		SOIC-8/-14	0.99
INA137	Low Distortion, $G = 1/2$ or 2	I	1, 2	2, 1/2	1000	2 ²	74	4	(V+) - 2 to (V-) + 2	±4 to ±18	2.9	SOIC-8/-14	0.99
High Com	mon-Mode Voltage												
INA117	±200-V CM Range	I	1	1	1000	20	86	0.2	(V+) - 5 to (V-) + 5	±5 to ±18		SOIC-8	2.70
INA146	±100-V CM Range, Prog. Gain	I	1	0.1-100	5000	100 ²	70	0.55	(V+) - 1 to (V-) + 0.15	±1.35 to ±18	0.7	SOIC-8	1.60
INA148	±200-V CM Range, 1-M Ω Input	I	1	1	5000	100 ²	70	0.1	(V+) - 1 to (V-) + 0.25	±1.35 to ±18	0.3	SOIC-8	1.95
1													

 $^{1}I = -40^{\circ}C \text{ to } +85^{\circ}C.$

²Denotes single supply.

³Suggested resale price in U.S. dollars in quantities of 1,000.

Current Shunt Monitors

Device High-Side	Description Current Shunt Monitors	Ch.	Gain (μV)	Offset (µV) (max)	Offset Drift (μV/°C) (max)	CMRR (dB) (min)	BW (MHz) (typ)	Output Voltage Swing (V) (min)	Power Supply (V)	l _Q Per Ch. (mA) (max)	Package(s)	Price ¹
INA138	36V max	1	200	1000	1	100	0.8	0 to (V+) -0.8	+2.7 to 36	0.045	SOT23-5	0.95
INA139	High-Speed, 40V max	1	1000	1000	1	100	4.4	0 to (V+) -0.9	+2.7 to 40	0.125	SOT23-5	0.95
INA168	60V max	1	200	1000	1	100	0.8	0 to (V+) -0.8	+2.7 to 60	0.045	SOT23-5	1.15
INA169	High-Speed, 60V max	1	1000	1000	1	100	4.4	0 to (V+) -0.9	+2.7 to 60	0.125	SOT23-5	1.15
INA170	Bi-directional	1	1000	1000	1	100	0.4	0 to (V+) -0.9	+2.7 to 60	0.125	MSOP-8	1.21

¹Suggested resale price in U.S. dollars in quantities of 1,000.

 $\label{eq:linear} {}^{1} Internal + 40 - V input protection. \\ {}^{2} WI = -55^{\circ} C \ to + 125^{\circ} C; \ I = -40^{\circ} C \ to + 85^{\circ} C; \ EI = -40^{\circ} C \ to + 125^{\circ} C. \\$

Texas Instruments 20 2004

³Typical. ⁴–40°C to +85°C.

⁵Suggested resale price in U.S. dollars in quantities of 1,000.

		C = - 2		Non	Input Bias	Offset at	Offset	CMRR at	BW at	Noise at	D	l _ū Per		
		Spec ² Temp		Linearity (%)	Current (nA)	G = 100 (μV)	Drift (µV/°C)	G = 100 (dB)	G = 100 (kHz)	1kHz (nV/√Hz)	Power Supply	Amp (mA)		
Device	Description	Range	Gain	(max)	(max)	(max)	(max)	(min)	(min)	(typ)	(V)	(max)	Package(s)	Price ⁵
Single-Su	,													
INA321	RRO, SHDN, Low Offset and Gain Error	WI	5 to10000	0.01	0.01	1000	7 ³	90	50	100	2.7 to 5.5	0.06	MSOP-8	1.10
INA2321	Dual INA321	WI	5 to10000	0.01	0.01	1000	73	90	50	100	2.7 to 5.5	0.06	TSSOP-14	2.02
INA322	RRO, SHDN, Low Cost	WI	5 to 10000	0.01	0.01	10000	7	60	50	100	2.7 to 5.5	0.06	MSOP-8	0.91
INA2322	Dual INA322	WI	5 to 10000	0.01	0.01	10000	7	60	50	100	2.7 to 5.5	0.06	TSSOP-14	1.72
INA122	µPower, RRO, CM to Gnd	I	5 to 10000	0.012	25	250	3	90	5	60	2.2 to 36	0.085	SOIC-8	1.95
INA332	RRO, Wide BW, SHDN	WI	5 to 1000	0.01	0.01	10000	73	60	500	100	2.7 to 5.5	0.1	MSOP-8	0.80
INA2332	Dual INA332	WI	5 to 1000	0.01	0.01	10000	73	60	500	100	2.7 to 5.5	0.1	MSOP-8	1.45
INA126	µPower, < 1 V VSAT, Low Cost	I	5 to 10000	0.012	25	250	3	83	9	35	2.7 to 36	0.2	SO/MSOP-8	0.99
INA2126	Dual INA126	I	5 to 10000	0.012	25	250	3	83	9	35	2.7 to 36	0.2	SO/MSOP-16	1.80
INA118	Precision, Low Drift, Low Power ¹	I	1 to 10000	0.002	5	55	0.7	107	70	10	2.7 to 36	0.385	SOIC-8	3.73
INA331	RRO, Wide BW, SHDN	WI	5 to 1000	0.01	0.01	500	5 ³	90	2000	46	2.7 to 5.5	0.5	MSOP-8	1.05
INA2331	Dual INA331	WI	5 to 1000	0.01	0.01	1000	5 ³	80	2000	46	2.7 to 5.5	0.5	TSSOP-14	2.35
INA125	Internal Ref, Sleep Mode ¹	I	4 to 10000	0.01	25	250	2	100	4.5	38	2.7 to 36	0.525	SOIC-16	2.10
	pply, Low Input Bias Current I _B < 1	100 pA												
INA155	Low Offset, RRO, SR = 6.5 V/µs	WI	10, 50	0.015	0.01	1000	5 ³	86	110	40	2.7 to 5.5	2.1	MSOP-8	1.00
INA156	Low Offset, RRO, Low Cost, SR = 6.5 V/µs	WI	10, 50	0.015	0.01	8000	5 ³	86	110	40	2.7 to 5.5	2.1	SOIC-8, MSOP-8	0.90
INA321	RRO, SHDN, Low Offset and Gain Error	WI	5 to 10000	0.01	0.01	1000	7 ³	90	50	100	2.7 to 5.5	0.06	MSOP-8	1.10
INA2321	Dual INA321	WI	5 to 10000	0.01	0.01	1000	73	90	50	100	2.7 to 5.5	0.06	TSSOP-14	2.02
INA322	RRO, SHDN, Low Cost	WI	5 to 10000	0.01	0.01	10000	7	60	50	100	2.7 to 5.5	0.06	MSOP-8	0.91
INA2322	Dual INA322	WI	5 to 10000	0.01	0.01	10000	7	60	50	100	2.7 to 5.5	0.06	TSSOP-14	1.72
INA331	RRO, Wide BW, SHDN	WI	5 to 1000	0.01	0.01	500	5 ³	90	2000	46	2.7 to 5.5	0.5	MSOP-8	1.05
INA2331	Dual INA331	WI	5 to 1000	0.01	0.01	1000	5 ³	80	2000	46	2.7 to 5.5	0.5	TSSOP-14	2.35
INA332	RRO, Wide BW, SHDN	WI	5 to 1000	0.01	0.01	10000	7 ³	60	500	100	2.7 to 5.5	0.1	MSOP-8	0.80
INA2332	Dual INA332	WI	5 to 1000	0.01	0.01	10000	73	60	500	100	2.7 to 5.5	0.1	TSSOP-14	1.45
Single-Su	pply, Precision V _{OS} < 300 µV, Low	V _{os} Drift												
INA118	Precision, Low Drift, Low Power ¹	I	1 to 10000	0.002	5	55	0.7	107	70	10	2.7 to 36	0.385	SOIC-8	3.73
INA326	RRIO, Auto Zero, CM > Supply, Low Drift	I	0.1 to 10000	0.01	2	100	0.4	100	1	33	2.7 to 5.5	3.4	MSOP-8	1.70
INA327	RRIO, Auto Zero, SHDN, CM > Supply, Low Drift	I	0.1 to 10000	0.01	2	100	0.4	100	1	33	2.7 to 5.5	3.4	MSOP-10	1.85
INA337	RRIO, Auto Zero, Low Drift, CM > Supply, 125°C	EI	0.1 to 10000	0.01	2	100	0.4	106	1	33	2.7 to 5.5	3.4	MSOP-8	1.71
INA338	RRIO, Auto Zero, Low Drift, CM > Supply, SHDN, 125°C	EI	0.1 to 10000	0.01	2	100	0.4	106	1	33	2.7 to 5.5	3.4	MSOP-10	1.85
INA122	μPower, RRO, CM to Gnd		5 to 10000	0.012	25	250	3	90	5	60	2.2 to 36	0.085	SOIC-8	1.95
INA122 INA125	Internal Ref, Sleep Mode ¹	1	4 to 10000	0.012	25	250	2	100	4.5	38	2.2 to 30 2.7 to 36	0.525	SOIC-16	2.10
INA125	μPower, < 1 V V _{SAT} , Low Cost	1	5 to 10000	0.012	25	250	3	83	9	35	2.7 to 36	0.323	SO/MSOP-8	0.99
INA120	Dual INA126	1	5 to 10000	0.012	25	250	3	83	9	35	2.7 to 30	0.2	SO/MSOP-16	1.80
	plifiers for Temperature Control		5 10 10000	0.012	I _B (nA)		Gemp Erro		5	¹ /F Noise	2.7 00 00	0.2	30/11/001 10	1.00
INA330	Optimized for Precision 10-kΩ Thermistor Applications	I	—	—	0.2 ³	-	0.009°C ³		1	0.0001 °C pp ²	2.7 to 5.5	3.6	MSOP-10	1.45
	0-V input protection. C to +125°C: L = -40°C to +85°C: FL = -	40°C to	12500							6 PP		New devi	ces are listed in l	oold red.

Amplifiers

37

G

Amplifiers

Dual-Supply Instrumentation Amplifiers

		Spec ⁴ Temp		Non Linearity (%)	Input Bias Current (nA)	Offset at G = 100 (µV)	Offset Drift (µV/°C)	CMRR at G = 100 (dB)	BW at G = 100 (kHz)	Noise at 1kHz (nV/√Hz)	Power Supply	I _Q Per Amp (mA)		
Device	Description	Range	Gain	(max)	(max)	(max)	(max)	(min)	(min)	(typ)	(V)	(max)	Package(s)	Price ⁵
	ply, Low Power I _Q < 850 µA Per In	strument												
INA122	µPower, RRO, CM to Gnd	1	5 to 10000	0.012	25	250	3	90	5	60	±1.3 to ±18	0.085	DIP-8, SOIC-8	1.95
INA126 ¹	µPower, < 1 V V _{SAT} , Low Cost	1	5 to 10000	0.012	25	250	3	83	9	35	±1.35 to ±18	0.2	DIP/SO/MSOP-8	0.99
INA118	Precision, Low Drift	1	1 to 10000	0.002	5	55	0.7	107	70	10	±1.35 to ±18 ²	0.385	SOIC-8	3.73
INA121	Low Bias, Precision	1	1 to 10000	0.005	0.05	500	5	100	50	20	± 2.25 to $\pm 18^2$	0.525	SO-8 SOIC-16	2.35
INA125	Internal Ref, Sleep Mode ²	1	4 to 10000	0.01	25	250	2	100	4.5	38	±1.35 to ±18	0.525		2.10
INA128 ¹	Precision, Low Noise, Low Drift ²	1	1 to 10000	0.002	5	60	0.7	120	200	8	±2.25 to ±18	0.8	SOIC-8	3.31
INA129	Precision, Low Noise, Low Drift, AD620 Second Source ²	I	1 to 10000	0.002	5	60	0.7	120	200	8	±2.25 to +18	0.8	SOIC-8	3.31
INA141 ¹	Precision, Low Noise, Low Power, Pin Com. w/AD6212 ²	I	10, 100	0.002	5	50	0.7	110	200	8	±2.25 to +18	0.8	SOIC-8	3.31
Dual-Sup	oply, Low Input Bias Current I _E	₃ < 100 p	A											
INA110	Fast Settle, Low Noise, Wide BW	С	1,10,100, 200, 500	0.01	0.05	280	2.5	106	470	10	±6 to ±18	4.5	CDIP-16	6.70
INA121	Precision, Low Power ²	1	1 to 10000	0.005	0.05	500	5	100	50	20	±2.25 to ±18 ²	0.525	SO-8	2.35
INA111	Fast Settle, Low Noise, Wide BW	I	1 to 10000	0.005	0.02	520	6	106	450	10	±6 to ±18	4.5	SO-16	3.91
INA116	Ultra Low I _B 3 fA (typ), with Buffered Guard Drive Pins ²	Ι	1 to 10000	0.01	0.0001	5000	40	80	70	28	±4.5 to ±18	1.4	SO-16	3.95
Dual-Sur	oply, Precision V _{OS} < 300 μV, L	ow Voo	Drift	_	_	_	_	_	_	_				
INA114	Precision, Low Drift ²		1 to 10000	0.002	2	50	0.25	110	10	11	±2.25 to ±18	3	SO-16	3.55
INA115	Precision, Low Drift, with Gain Sense Pins ²	1	1 to 10000	0.002	2	50	0.25	120	10	11	±2.25 to ±18	3	SO-16	4.00
INA131	Low Noise, Low Drift ²	1	100	0.002	2	50	0.25	110	70	12	±2.25 to ±18	3	PDIP-8	3.59
INA141 ¹	Precision, Low Noise, Pin Com. w/AD6212	I	10, 100	0.002	5	50	0.7	110	200	8	± 2.25 to $\pm 18^2$	0.8	SOIC-8	3.31
INA118	Precision, Low Drift	1	1 to 10000	0.002	5	55	0.7	107	70	10	±1.35 to ±18 ²	0.385	SOIC-8	3.73
INA128 ¹	Precision, Low Noise, Low Drift ²	I	1 to 10000	0.002	5	60	0.7	120	200	8	±2.25 to ±18	0.8	SOIC-8	3.31
INA129	Precision, Low Noise, Low Drift, AD620 Second Source ²	I	1 to 10000	0.002	5	60	0.7	120	200	8	±2.25 to ±18	0.8	SOIC-8	3.31
INA122	μPower, RRO, CM to Gnd	1	5 to 10000	0.012	25	250	3	90	5	60	±1.3 to ±18	0.085	SOIC-8	1.95
INA125	Internal Ref, Sleep Mode ²	1	4 to 10000	0.01	25	250	2	100	4.5	38	±1.35 to ±18	0.525	SOIC-16	2.10
INA126 ¹	µPower, < 1 V V _{SAT} , Low Cost	I	5 to 10000	0.012	25	250	3	83	9	35	±1.35 to ±18	0.2	SO/MSOP-8	0.99
INA101	Low Noise, Wide BW, Gain Sense Pins	С	1 to 10000	0.007	30	259	23	100	25000	13	±5 to ±18	8.5	T0-100, CDIP-14, PDIP-14, SO-16	7.52
INA110	Fast Settle, Low Noise, Low Bias, Wide BW	С	1,10,100, 200, 500	0.01	0.05	280	2.5	106	470	10	±6 to ±18	4.5	CDIP-16	6.70
Dual-Sur	oply, Lowest Noise													
INA103	Precision, Fast Settle, Low Drift, Audio, Mic Pre Amp,	С	1, 100	0.0006 ³	12000	255	1.2 ³	100	800	1	±9 to ±25	13	SO-16	4.65
INA163	THD+N = 0.0009% Precision, Fast Settle, Low Drift, Audio, Mic Pre Amp, THD+N = 0.002%	I	1 to 10000	0.0006 ³	12000	300	1.2 ³	100	800	1	±4.5 to ±18	12	SOIC-14	1.95
INA166	Precision, Fast Settle, Low Drift, Audio, Mic Pre Amp, THD+N = 0.09%	I	2000	0.005	12000	300	2.5 ³	100	450	1.3	±4.5 to ±18	12	SO-14 Narrow	5.66
INA217	Precision, Low Drift, Audio, Mic PreAmp, THD+N = 0.09% SSM2017 Replacement	I	1 to 10000	0.0006 ³	12000	300	1.2 ³	-100	800	1.3	±4.5 to ±18	12	SO-16	2.35

 1 Parts also available in a dual version. 2 Internal +40-V input protection. 3 Typical. 4 I = -40°C to +85°C; C = 0°C to 70°C.

⁵Suggested resale price in U.S. dollars in quantities of 1,000.

Amplifiers

High-Speed Amplifiers

IIIgii-Sp			013													
Device Fully Differe	Ch.	SHDN	Supply Voltage (V)	A _{CL} (min)	BW at A _{CL} (MHz) (typ)	BW G = +2 (MHz) (typ)	GBW Product (MHz) (typ)	Slew Rate (V/µs)	Settling Time 0.1% (ns) (typ)	THD 2 Vpp G = 1 1 MHz (dB) (typ)	Gain	rential Phase (°)	V _N (nV/√Hz) (typ)	V _{OS} (mV) (max)	Package(s)	Price ¹
THS4120/21	1	Y	3.0 to 3.6	1	100		_	55	60	-75			5.4	8	MSOP PowerPAD™	1.78
THS4120/21 THS4130/31		Y							78						MSOP PowerPAD	
	1		5, ±5, ±15	1	150	90	90	52		-97	—	—	1.3	2		3.30
THS4140/41	1	Y	5, ±5, ±15	1	160			450	96	-79	—	—	6.5	7	MSOP PowerPAD	3.22
THS4150/51	1	Y	5, ±5, ±15	1	150	81	100	650	53	-84	—	_	7.6	7	MSOP PowerPAD	4.45
THS4500/01	1	Y	5, ±5	1	370	175	300	2800	6.3	-100	_	_	7	7	MSOP PowerPAD	3.45
THS4502/03	1	Y	5, ±5	1	370	175	300	2800	6.3	-100	—	—	6	7	MSOP PowerPAD	3.77
THS4504/05	1	Y	5, ±5	1	260	110	210	1800	20	-100	—	-	8	7	MSOP PowerPAD	1.65
Fixed and V	ariable G	lain														
BUF634	1	N	5, ±5, ±15	1	180	—	—	2000	200	—	0.4	0.1	4	100	SOIC	3.82
OPA692	1	Y	5, ±5	2	280	225	—	2000	8	-70	0.07	0.02	1.7	2.5	SOT23, SOIC	1.25
OPA3692	3	Y	5, ±5	2	280	225	_	2000	8	-79	0.07	0.02	1.7	3	SSOP, SOIC	2.88
THS4302	1	Y	3, 5	5	2400	—	12000	5500	—	-82	-		2.8	4.25	Leadless MSOP PowerPAD	1.97
THS7001	1	Y	±5, ±15	1	_	100	—	85	85	-60	0.02	0.01	1.7	5	TSSOP PowerPAD	3.52
THS7002	2	Y	±5, ±15	1	_	100	_	85	85	-88	0.02	0.01	1.7	5	TSSOP PowerPAD	5.61
THS7530	1	Y	5	4	300	_	_	1750	_	-51	_	_	1.27		TSSOP PowerPAD	3.65
CMOS Ampl	lifiers															
0PA354	1	N	2.5 to 5.5	1	250	90	100	150	30	—	0.02	0.09	6.5	8	SOT23, SOIC PowerPAD	0.69
0PA2354	2	N	2.5 to 5.5	1	250	90	100	150	30	—	0.02	0.09	6.5	8	SOIC PowerPAD, MSOP	1.14
0PA4354	4	Ν	2.5 to 5.5	1	250	90	100	150	30	_	0.02	0.09	6.5	8	SOIC, TSSOP	1.71
0PA355	1	Y	2.5 to 5.5	1	450	100	200	300	30		0.02	0.05	5.8	9	SOT23, SOIC	0.85
0PA2355	2	Y	2.5 to 5.5	1	450	100	200	300	30	_	0.02	0.05	5.8	9	MSOP	1.40
0PA3355	3	Y	2.5 to 5.5	1	450	100	200	300	30	_	0.02	0.05	5.8	9	SOIC	1.79
0PA356	1	N	2.5 to 5.5	1	450	100	200	300	30	_	0.02	0.05	5.8	9	SOT23, SOIC	0.85
OPA358	1	N	2.7 to 3.3	1	80	35	70	70	_	_	0.02	0.05	5.8	9	SC-70, SOT23	0.45
OPA360	1	N	2.7 to 3.3	1	80	35	70	70	_	_	0.02	0.05	5.8	9	SC-70, SOT23	0.49
0PA2356	2	N	2.5 to 5.5	1	450	100	200	300	30	_	0.02	0.05	5.8	9	SOIC, MSOP	1.40
0PA357	1	Y	2.5 to 5.5	1	250	90	100	150	30	_	0.02	0.09	6.5	8	SOT23, SOIC PowerPAD	0.69
OPA2357 FET-Input	2	Y	2.5 to 5.5	1	250	90	100	150	30	—	0.02	0.09	6.5	8	MSOP	1.14
0PA655	1	Ν	±5	1	400	185	240	290	8	-100	0.01	0.01	6	2	SOIC	9.24
0PA656	1	N	±5	1	500	200	230	290	_	-80	0.02	0.05	7	1.8	SOT23, SOIC	3.35
0PA657	1	N	±5	7	350	300	1600	700	10	-80			4.8	1.8	SOT23, SOIC	3.74
THS4601	1	N	±5, ±15	1	440	95	180	100	135	-76	0.02	0.08	5.4	4	SOIC	9.95
Voltage Fee		14	±0, ±10		440	00	100	100	105	70	0.02	0.00	0.4	7	0010	0.00
0PA2652	2	N	±5	1	700	200	200	335	_	-75	0.05	0.03	8	7	SOT23, SOIC	1.24
0PA2822	2	N	5, ±5	1	400	200	240	170	32	-86	0.03	0.03	2	1.2	SOIC, MSOP	2.16
0PA2622 0PAy690	2 1, 2, 3	Y	5, ±5 5, ±5	1	400 500	200	300	1800	8	-80 -80	0.02	0.03	5.5	4	SOT23, SOIC	1.39
-																
OPA842	1	N	±5, 5	1	350	—		400	15	—	0.003		2.6	0.3	SOIC, SOT23	1.35
OPA846	1	N	±5	7	500	—	1750	625	10	—	0.02	0.02	1.2	0.15	SOIC, SOT23	1.59
OPA2846	2	N	±5	7	500	—	1750	625	10	—	0.02	0.02	1.2	0.15	SOIC	
OPA843	1	N	±5, 5	3	500	-	800	1000	7.5	—	0.001	0.012	2	0.3	SOIC, SOT23	1.39
OPA847	1	N	±5, 5	12	600	—	3800	950	10	—	—	—	0.85	0.1	SOIC, SOT23	1.49
SN10501y	1, 2, 3	N	±5, 5	1	230	—	120	990	25	-88	0.007	0.007	13	12	SOIC, SOT23	0.70
THS4001	1	N	5, ±5, ±15	1	270	—	100	400	40	-72	0.04	0.15	12.5	8	SOIC	1.99
THS4011/12	1, 2	N	±5, ±15	1	290	50	100	310	37	-80	0.006	0.01	7.5	6	SOIC, MSOP PowerPAD	2.26
THS4021/22	1, 2	N	±5, ±15	10	350	—	1600	470	40	-68	0.02	0.08	1.5	2	SOIC, MSOP PowerPAD	2.16

¹Suggested resale price in U.S. dollars in quantities of 1,000.

New devices are listed in **bold red**. Preview devices are listed in **bold blue**.

e

Amplifiers

40

High-Speed Amplifiers (Continued)

Device Voltage Fee		SHDN	Supply Voltage (V)	A _{CL} (min)	BW at A _{CL} (MHz) (typ)	BW G = +2 (MHz) (typ)	GBW Product (MHz) (typ)	Slew Rate (V/µs)	Settling Time 0.1% (ns) (typ)	THD 2 Vpp G = 1 1 MHz (dB) (typ)	Gain	rential Phase (°)	V _N (nV/√Hz) (typ)	V _{OS} (mV) (max)	Package(s)	Price ¹
THS4031/32	1, 2	N	±5, ±15	2	100	100	200	100	60	-72	0.015	0.025	1.6	2	SOIC, MSOP PowerPAD	1.96
THS4041/42	1, 2	Ν	±5, ±15	1	165	60	100	400	120	-75	0.01	0.01	14	10	SOIC, MSOP PowerPAD	1.62
THS4051/52	1, 2	Ν	±5, ±15	1	70	38	—	240	60	-82	0.01	0.01	14	10	SOIC, MSOP PowerPAD	1.08
THS4061/62 THS4081/82	1, 2 1, 2	N	±5, ±15 ±5, ±15	1	180 175		100	400 230	40 43	-72 -64	0.02	0.02	14.5 10	8	SOIC, MSOP PowerPAD SOIC, MSOP	1.37
THS4211/15	1, 2	Y	±3, ±13	1	1000	325	350	970	43	-95		0.003	7	12	PowerPAD SOIC, MSOP	1.11
THS4222/26	2	Y		1	230	100	120	975	25	-100		0.003	, 13	12	PowerPAD SOIC, MSOP	1.79
1134222/20	Z	T	3, 5, ±5, 15	1	230	100	120	970	20	-100			15	10	PowerPAD, TSSOP PowerPAD	1.79
THS4271/75	1	Y	5, ±5, 15	1	1400	390	400	1000	25	-110	0.007	0.004	3	10	SOIC, MSOP PowerPAD, Leadless MSOP PowerPAD	2.69
THS4304	1	Ν	5	1	2500	—	1000	1000	5	-92	—	—	2.4	0.5	SOIC, MSOP	—
Current Fee			_			_	_	-	_			-	_			
OPAy658	1, 2	N	±5	1	900	680	—	1700	11.5	-70	0.025	0.02	2.7	5.5	SOT23, SOIC	1.43
OPAy683	1, 2	Y	3, 5, ±5	1	200	150	—	540		-75	0.06	0.03 0.01	4.4	4.1	SOT23, SOIC	1.05
OPA693 OPA695	1, 3 1	N N	5, ±5	2	800	_	-	2400	3 3	-85	0.02	0.01	1.6 1.6	0.7	SOT23, SOIC	1.30
OPA095 OPA2674	2	N	5, ±5 5, ±6	1	1200 260	_	_	2400 2000		-85	0.02	0.01	1.0	0.7 2	SOT23, SOIC SOIC, SOT23	1.35
OPA2074 OPAy684	2 1, 2, 3, 4	Y	5, ±0 5, ±5	1	200	170	_	820	11	-75	0.03	0.01	3.7	3.5	SOT23, SOIC	1.19
OPAy691	1, 2, 3, 4	Ŷ	5, ±5	1	280	225	_	2100	8	-75 -80	0.04	0.02	1.7	2.5	SOT23, SOIC	1.15
THS3001	1, 2, 3	N	5, ±5 ±5, ±15	1	420	385	_	6500	40	-93	0.07	0.02	1.6	3	SOIC, MSOP PowerPAD	3.05
THS306y	1, 2	N	±5, ±15	1	300	275	_	7000	30	-85	0.02	0.01	2.6	3.5	SOIC, SOIC PowerPAD MSOP PowerPAD	2.95
THS3091/5	1	Y	±5, ±15	1	235	210	_	5000	42	-72	0.013	0.02	2	3	SOIC, SOIC PowerPAD	3.59
THS3092/6	2	Y	±5, ±15	1	235	210	—	5000	42	-72	0.013	0.02	2	4	SOIC, SOIC PowerPAD	5.96
THS3112/15	2	Y	±5, ±15	1	110	110	—	1550	63	-78	0.01	0.011	2.2	8	SOIC, SOIC PowerPAD, TSSOP PowerPAD	3.03
THS3110/11	1	Y	±5, ±15	1	100	90	_	1300	27	-78	0.01	0.03	3	6	SOIC, MSOP PowerPAD	1.81
THS3120/1	1	Ν	±5, ±15	1	130	—	—	1500	11	-53	0.007	0.018	2.5	2	SOIC, MSOP PowerPAD	2.25
THS3122/25	2	Y	±5, ±15	1	160	128	_	1550	64	-78	0.01	0.011	2.2	6	SOIC, SOIC PowerPAD, TSSOP PowerPAD	3.74
THS3201	1	Ν	±5, ±15	1	1800	850	—	6200	20	-85	0.006	0.03	1.65	0.7	MSOP, SOT23, SOIC	1.59
THS3202	2	Ν	±5, 15	1	1200	1000	-	9000	10	-65	0.02	0.01	6.8	4	SOIC, MSOP PowerPAD	2.89

¹Suggested resale price in U.S. dollars in quantities of 1,000.

New devices are listed in **bold red**. Preview devices are listed in **bold blue**.

Amplifiers

Operational Amplifiers

		Spec ¹	e n	Offset	Drift		Noise 1 kHz		SR ()///////	V	I ₀ /Amp	
)evice	Description	Temp Range	S, D, T. Q ²	(mV) (max)	(µV/°С) (typ)	(pA) (max)	nV/√Hz)	(MHz) (typ)	(V/µs) (typ)	V _{SUP} (V)	(mA) (max)	Pric
	put—Low Offset, Low Drift	Inango	1, 4		(4))			(1)(2)	(5)(5)	(•/	(intext)	1110
PA277	Lowest offset / drift	1	S, D, Q	0.02	0.1	1 nA	8	1	0.8	±2 to ±18	0.825	0.9
PA228	Precision, low noise, G>5	I	S, D, Q	0.075	0.1	10 nA	3	33	10	5 to 36	3.8	1.0
PA227	Very low noise	Ì	S, D, Q	0.075	0.1	10 nA	3	1	1	±2.5 to ±18	3.8	1
LE2027	Precision, low noise	I	S	0.1	0.4	90 nA	2.5	13	2.8	8 to 38	5.3	0.8
PA234	SS, general purpose	1	S, D, Q	0.1	0.5	25 nA	25	0.35	0.2	2.7 to 36	0.3	0.9
LC220x	SS, low noise	I	S, D	0.2	0.5	10	8	1.8	2.5	4.6 to 16	1.5	1.5
PA241	Very low power, high precision	i	S, D, Q	0.25	0.4	20 nA	45	0.035	0.01	2.7 to 36	0.03	1.0
PA251	microPower, high CMRR	I	S, D, Q	0.25	0.4	2 nA	45	0.35	0.1	2.7 to 36	0.025	1.0
PA244	microPower, SS, low cost		S, D, Q	1.5	4	25 nA	22	0.24	0.1	2.6 to 36	0.05	0.
ET-Input–		·	0, 2, 2			201111		0.2.1	011		0.00	0.
PA129	Lowest bias current	1	S	2	3	100 fA	15	1	2.5	10 to 36	1.8	\$3.
PA124	Low noise DiFET	i	S	0.5	2	1	8	1.5	1.6	10 to 36	3.5	\$3.
PA121	Low cost precision DiFET	i	S	2	3	5	6	2	2	10 to 36	4.5	\$5.
PA637	Low THD+N, low offset, G>5	12	S	0.1	0.4	10	5.6	80	135	±4.5 to ±18	7.5	\$12
PA627	Very low THD+N, low offset	12	S	0.1	0.4	10	5.6	16	55	±4.5 to ±18	7.5	\$12
PA130	Low power	12	S, D, Q	1	2	20	16	1	2	4.5 to 36	0.65	\$1.
PA132	THD = 0.00008%	1	S, D, Q	0.5	2	50	8	8	20	±2.5 to ±18	4.8	\$1.
PA131	General purpose FET-input	1	S, D, Q S, D, Q	0.75	2	50	15	4	10	± 4.5 to ± 18	1.75	\$0
PA134	Low distortion	1	S, D, Q S, D, Q	2	2	100	8	8	20	4.5 to 36	5	\$0
PA137	Low-cost FET-input, SOT23	1	S, D, Q S, D, Q	3	15	100	45	1	3.5	4.5 to 36	0.22	\$0.
LE208x	High-speed, JFET input		S, D, Q S, D, Q	6	3.2	175	45 14	10	45	4.5 to 30	2.2	\$0. \$0.
	ow Power, Low Input Bias Current, Rail	-to-Rail I			3.2	175	14	10	40	4.0 10 30	2.2	φ0.
LV240x	SS, RRIO, SOT23	El	S, D, Q	1.2	3	300	500	0.005	0.002	2.5 to 16	0.95 µA	\$0.
PA349	70-kHz GBW on 1 µA, SC70		S, D, U S, D	1.2	10	15	300	0.003	0.002	1.8 to 5.5	0.002	\$0.
LV276x	SS, SOT23, SHDN	EI	S, D, Q	3.5	9	15	95	0.5	0.02	1.8 to 3.6	0.022	\$0
PA336	Lowest power precision amp, SOT23		S, D, Q S, D, Q	0.125	1.5	10	40	0.5	0.03	2.3 to 5.5	0.020	\$0.
PA347	microPower, low cost, SC70	EI	S, D, Q S, D, Q	6	2	10	40 60	0.35	0.03	2.3 to 5.5	0.032	\$0.
LV245x	microPower, SS	EI	S, D, Q S, D, Q	1.5	0.3	5000	51	0.35	0.17	2.3 to 5.5 2.7 to 6	0.034	\$0
PA348	High open-loop gain, SC70	EI	S, D, Q S, D, Q	5	2	10	35	1	0.12	2.1 to 5.5	0.065	\$0. \$0.
PA348 PA703/4												
	RRIO, SOT23 / G>5	т Г	S, D, Q	0.75	4	10	45	1/3	0.6	4 to 12	0.2	\$1.
PA364	1.8 V, high CMRR, SS	EI	S, D, Q	0.5	2	10	17	7	5	1.8 to 5.5	0.75	\$0.
PA373	General purpose, RRIO, SOT23	EI	S	5	3	10	15	6.5	5	2.3 to 5.5	0.75	\$0
LV278x	1.8 V, low power, SS, 8 MHz	EI	S, D, Q	3	8	15	18	8	4.3	1.8 to 3.6	0.82	\$0.
PA340	RRIO, SOT23		S, D, Q	0.5	2.5	10	25	5.5	6	2.5 to 5.5	0.95	\$0.
PA338	RRO, SOT23, G>5	EI	S, D	3	2	10	26	12.5	4.6	2.7 to 5.5	1	\$0.
PA337	RRO, SOT23	EI	S, D, Q	3	2	10	26	3	1.2	2.7 to 5.5	1	\$0.
PA743	RRIO, SOT23, 12 V	1	S, D, Q	1.5	8	10	30	7	10	3.5 to 12	1.5	\$0.
LC07x	Low noise, SHDN, high drive	1	S, D, Q	1	1.2	50	7	10	16	4.6 to 16	2.5	\$0.
LC08x	Low noise, SHDN, high drive		S, D, Q	1	1.2	50	8.5	10	16	4.5 to 16	2.5	\$0.
PA725	RRIO, SOT23, 0.003% THD+N	EI	S	3	4	200	6	20	30	5.5 to 12	5.5	\$0.
PA357	High-speed, SS, SHDN	EI	S, D, T	8	4	50	6.5	100	150	2.5 to 5.5	6	\$0.
PA380	Fastest precision transimpedance	EI	S, D	0.025	0.1	50	5 at 1 MHz	90	80	2.7 to 5.5	7	\$1.
PA350	16-bit ADC driver RRIO, MSOP		S, D, Q	0.5	4	10	8	38	22	2.5 to 5.5	7.5	\$1.
	High-speed, low voltage	EI	S, D, Q	8	5	10	5	44	22	2.7 to 5.5	8	\$1.
	High-speed, RRO	EI	S, D, T	9	7	50	5.8	200	300	2.5 to 5.5	11	\$1
PA353 PA355			0.0	5	2.5	5	3	180	80	2.7 to 5.5	12	\$1
PA355 PA300	Low noise, settling to 16-bits	EI	S, D	0								
PA355 <mark>PA300</mark> uto Zero .	Low noise, settling to 16-bits Autocalibration—Highest Precision, Lo	west Drif	ít									
PA355 PA300	Low noise, settling to 16-bits			0.005	0.02	200 100	— 60	2 1.5	1.6 1.5	2.7 to 5.5 2.7 to 12	0.3 0.75	0.9 1.3

 $^{2}S = single, D = dual, T = triple, Q = quad.$

³Suggested resale price in U.S. dollars in quantities of 1,000.

This very brief listing provides only a sampling of the industry's most complete op amp product line. See **amplifier.ti.com** for complete product trees, parametric sorts and application information.

æ

Comparators

Comparators

42

 \rightarrow

Device	Description	S, D, Q ¹	l _ū Per Ch. (mA) (max)	Output Current (mA) (min)	t _{RESP} Low-to-Hi (µs)	V _S (V) (min)	V _S (V) (max)	V _{0S} (25°C) (mV) (max)	Output Type	Price ²
TLV230x	Sub-micropower amp and comp	D	0.0017		55	2.5	16	5	Open Drain/Collector	0.84
TLV270x	Sub-micropower amp and comp	S, D	0.0019	_	36	2.5	16	5	Push-Pull	0.84
TLV340x	Nanopower, open drain, RRIO	S, D, Q	0.00055		80	2.6	16	3.6	Open Drain/Collector	0.56
TLV349x	Low voltage, excellent speed/power	S, D	0.0012	_	<0.1	1.8	5.5	15	Push-Pull	0.55
TLV3011	Micropower, 1.242-V reference	S	0.003	5	<7	1.8	5.5	15	Open Drain	0.75
TLV3012	Nanopower, 1.242-V reference	S	0.005	0.5	6	1.8	5.5	12	Push-Pull	0.75
1 S - single F) - dual () - quad									

 ${}^{1}S = single, D = dual, Q = quad.$

²Suggested resale price in U.S. dollars in quantities of 1,000.

Clock Distribution/Synthesizers

Clock Distribution Circuits

								Char.		
		Input	Output		V _{CC}	Propagation	Output	Temp.		1
Device	Description	Level	Level	Frequency	(V)	Delay	Skew	(°C)	# Pins/Pkg	Price ¹
Differential Clo	ocking									
CDCM1804	1:3 LVPECL + 1 LVTTL w/dividers	LVPECL	LVPECL+	800 MHz	3.3	TBA	TBA	TBA	24/MLF	See
			LVTTL							Web
CDCP1803	1:3 buffer with dividers	LVPECL	LVPECL	0 to 800 MHz	3.3	TBA	TBA	-40 to 85	24/MLF	See
										Web
CDCLVP110	1:10 LVPECL/HSTL with selectable	LVPECL/	LVPECL	0 to 3.5 GHz	2.5/3.3	230 to 370 ps	30 ps	-40 to 85	32/LQFP	5.25
	input clock	HSTL								5.60
CDCLVD110	1:10 programmable LVDS clock	LVDS	LVDS	0 to 900 MHz	2.5	3 ns (max)	30 ps (typ)	-40 to 85	32/TQFP	7.00
CDCVF111	1:9 diff LVPECL clock	LVPECL	LVPECL	0 to 650 MHz	3.3	450 to 600 ps	50 ps	0 to 70	28/PLCC	7.70
Single-Ended										
CDC351	1:10 with fast t _{pd} fanout,	LVTTL	LVTTL/	0 to 100 MHz	3.3	3 to 4 ns	500 ps	0 to 70	24/SOIC/SSOP	5.36
	3-state outputs		LVCMOS							
CDC391	1:6 clock with selectable polarity	TTL	TTL	0 to 100 MHz	5	1.5 to 5.0 ns	500 ps	-40 to 85	16/SOIC	3.24
	and 3-state outputs									
CDCV304	1:4 fanout for PCI-X and	LVTTL	LVCMOS	0 to 140 MHz	3.3	1.8 to 3.0 ns	100 ps	-40 to 85	8/TSSOP	1.05
	general apps									
CDCVF2310 ²	1:10 clock with 2 banks for	LVTTL/	LVTTL/	0 to 170 MHz	2.5/3.3	1.3 to 2.8 ns	100 ps @ 3.3 V	-40 to 85	24/TSSOP	1.94
	general-purpose apps	LVCMOS	LVCMOS	(V _{DD} = 2.5 V)		(V _{DD} = 2.5 V)	170 ps @ 2.5 V			
				0 to 200 MHz		1.5 to 3.5 ns				
				$(V_{DD} = 3.3 V)$		(V _{DD} = 3.3 V)				

For more information regarding test conditions used to obtain measurements, see datasheets at: www.ti.com/clocks

¹Suggested resale price in U.S. dollars in quantities of 1,000.

²With series output resistors.

Advanced PLL-Based Synthesizers

Device	Description	Input Level	Output Level	Frequency (MHz)	V _{CC} (V)	Jitter (Peak-to-Peak [P-P] or Cycle-to-Cycle [C-C])	Phase Error ¹	Output Skew (max) (ps)	Char. Temp. (°C)	# Pins/ Pkg	Price ²
Jitter Cleaners	5										
CDC7005	Jitter cleaner, 5 LVPECL	LVCMOS	LVPECL	10 to 800	3.3	—	—	200	-40 to 85	64/BGA	10.00
Phase Aligner	S										
CDC5801	Multiplier/divider with programmable delay and	LVCMOS	LVPECL/ LVDS/	150 to 500/ 12.5 to 62.5	3.3	P-P: PA bypassed = 40 ps, PA active = 70 ps,	—	—	–40 to 85	24/SSOP	2.80
	phase alignment		LVTTL			Division mode = 75 ps					
CDCF5801	Multiplier/divider with	LVCMOS	LVPECL/	25 to 280	3.3	P-P: PA bypassed = 40 ps,	—	—	-40 to 85	24/SSOP	2.80
	programmable delay and		LVDS/			PA active = 70 ps,					
	phase alignment		LVTTL			Division mode = 75 ps					
	ation regarding test conditions use	ed to obtain n	neasurement	s, see datashee	ets at:	www.ti.com/clocks			New device	es are listed i	in bold red.

²Suggested resale price in U.S. dollars in quantities of 1,000.

Information for Medical Applications

Data Converters

High-Speed ADCs

				SNR @	Power	Input Voltage	Analog			
	Resolution	Sample		f _{IN} = 10 MHz	Dissipation	Range	Supply			
Device	(Bits)	Rate	Channels	(dB)	(mW)	(V)	(V)	Interface	Package(s)	Price ¹
ADS5500	14	125 MSPS	1	70	750	2.2 V _{pp}	3.3	Parallel	TQFP-48	95.00
ADS5273	12	70 MSPS	8	70.5	1104	1.5 to 2 V _{pp}	3.3	LVDS	TQFP-80	121.00
ADS5221	12	65 MSPS	1	70	285	1 to 2 V_{pp}	3.3	Parallel	TQFP-48	13.95
ADS5272	12	65 MSPS	8	70.5	984	1.5 to 2 V_{pp}	3.3	LVDS	TQFP-80	65.00
ADS2807	12	50 MSPS	2	68	720	$2 \text{ to } 3 \text{ V}_{pp}$	5	Parallel	TQFP-64	18.05
ADS5271	12	50 MSPS	8	70.5	936	1.5 to 2 V_{pp}	3.3	LVDS	TQFP-80	50.00
ADS5220	12	40 MSPS	1	70	140	1 to 2 V_{pp}	3.3	Parallel	TQFP-48	9.85
ADS5270	12	40 MSPS	8	63	900	1.5 to 2 V_{pp}	3.3	LVDS	TQFP-80	45.00
ADS5277	10	65 MSPS	8	60.5	872	1.5 to 2 V_{pp}	3.3	LVDS	TQFP-80	40.00
ADS5276	10	50 MSPS	8	60.5	816	1.5 to 2 V_{pp}	3.3	LVDS	TQFP-80	36.00
ADS5121	10	40 MSPS	8	60	500	1 V _{pp}	1.8	Parallel	BGA-257	38.85
ADS5122	10	40 MSPS	8	59	733	1 V _{pp}	1.8	Parallel	BGA-257	42.85
ADS5275	10	40 MSPS	8	59	700	1.5 to 2 V_{pp}	3.3	LVDS	TQFP-80	32.00
THS1040	10	40 MSPS	1	57	100	2 V _{pp}	3.3	Parallel	TQFP-48	5.10
CW Doppler A	ADCs .									
ADS1625	18	1.25 MSPS	1	93	520	±3.75	4.75 to 5.25	P18	TQFP-64	37.65
ADS8381	18	580 kSPS	1	90	88	(V _{REF}), +4.1	4.75 to 5.25	P8/P16	TQFP-48	15.75
ADS8383	18	500 kSPS	1	87	85	(V _{REF}), +4.1	4.75 to 5.25	P8/P16	TQFP-48	14.98
ADS1605	16	5 MSPS	1	88	570	±3.75	4.75 to 5.25	P16	TQFP-64	32.05
ADS8412	16	2 MSPS	1	88	155	(V _{REF}), +4.1	4.75 to 5.25	P8/P16	TQFP-48	21.00

1Suggested resale price in U.S. dollars in quantities of 1,000.

For current pricing, visit dataconverter.ti.com

New devices are listed in **bold red**.

Preview devices are listed in **bold blue**.

ADCs

		Sample	Number of									
	Res.	Rate	Input		Input Voltage		Linearity		SINAD	Power		
Device	(Bits)	(kSPS)	Channels ¹	Interface	(V)	V _{REF}	(%)	(Bits)	(dB)	(mW)	Package(s)	Price ³
ADS1201	24	1 MHz Ck	1 SE/1 Diff	Modulator	±10	Int/Ext	0.0015	24	—	25	SOIC-16	5.83
ADS1252	24	41	1 SE/1 Diff	Serial	±5	Ext	0.0015	24	—	40	SOIC-8	5.31
ADS1256	24	30	8 SE/4 Diff	Serial, SPI	PGA (1-64), ±5V	Ext	0.0015	24	—	35	SSOP-28	8.95
ADS1251	24	20	1 SE/1 Diff	Serial	±5	Ext	0.0015	24	—	7.5	SOIC-8	5.31
ADS1253	24	20	4 SE/4 Diff	Serial	±5	Ext	0.0015	24		7.5	SSOP-16	6.38
ADS1254	24	20	4 SE/4 Diff	Serial	±5	Ext	0.0015	24	—	4.36	SSOP-20	6.38
ADS1210	24	16	1 SE/1 Diff	Serial, SPI	PGA (1-16), ±5	Int/Ext	0.0015	24	_	27.5	PDIP-18, SOP-18	9.72
ADS1211	24	16	4 SE/4 Diff	Serial, SPI	PGA (1-16), ±5	Int/Ext	0.0015	24	—	27.5	PDIP-24, SOIC-24, SSOP-28	10.38
ADS1216	24	0.78	8 SE/8 Diff	Serial, SPI	PGA (1-128), ±2.5	Int/Ext	0.0015	24	—	0.6	TQFP-48	6.51
ADS1217	24	0.78	8 SE/8 Diff	Serial, SPI	PGA (1-128), ±5	Int/Ext	0.0012	24	_	0.8	TQFP-48	6.54
ADS1218	24	0.78	8 SE/8 Diff	Serial, SPI	PGA (1-128), ±2.5	Int/Ext	0.0015	24	_	0.8	TQFP-48	7.56
ADS1224	24	0.1	4 SE/4 Diff	Serial	±5	Ext	0.0015	24	—	0.48	TSSOP-20	3.25
ADS1244	24	0.03	4 SE/2 Diff	Serial	±5	Ext	0.0006	24	_	0.27	MSOP-10	2.95
ADS1245	24	0.03	1 SE/1 Diff	Serial	±2.5	Ext	0.0015	24	_	0.51	MSOP-10	3.07
ADS1240	24	0.015	4 SE/2 Diff	Serial, SPI	PGA (1-128), ±2.5	Ext	0.0015	24	_	0.6	SSOP-24	3.64
ADS1241	24	0.015	8 SE/4 Diff	Serial, SPI	PGA (1-128), ±2.5	Ext	0.0015	24	_	0.51	SSOP-28	4.00
ADS1242	24	0.015	4 SE/2 Diff	Serial, SPI	PGA (1-128), ±2.5	Ext	0.0015	24	_	0.6	TSSOP-16	3.44
ADS1243	24	0.015	8 SE/4 Diff	Serial, SPI	PGA (1-128), ±2.5	Ext	0.0015	24	—	0.6	TSSOP-20	3.80
ADS1212	22	6.25	1 SE/1 Diff	Serial, SPI	PGA (1-16), ±5	Int/Ext	0.0015	22	_	1.4	PDIP-18, SOP-18	7.34
ADS1213	22	6.25	4 SE/4 Diff	Serial, SPI	PGA (1-16), ±5	Int/Ext	0.0015	22	_	1.4	PDIP-24, SOIC-24, SSOP-28	8.25
ADS1250	20	25	1 SE/1 Diff	Serial, SPI	PGA (1-8), ±4	Ext	0.003	20	_	75	SOIC-16	6.63
DDC112	20	3	2 SE, 2 L _{IN}	Serial	50-1000 pC	Ext	0.025	20	_	80	SOIC-28, TQFP-32	11.52
ADS1625	18	1250	1 Diff	P18	±3.75	Int/Ext	0.0015	18	_	520	TQFP-64	37.65
ADS8381	18	580	1 SE	P8/P16/P18	V _{REF}	Ext	0.0028	18	88	100	TQFP-48	15.75

¹SE = Single Ended, Diff = Differential. ²NMC = no missing code resolution.
 ³Suggested resale price in U.S. dollars in quantities of 1,000. For current pricing, visit www.ti.com or dataconverter.ti.com

New devices are listed in **bold red**.

G

44

Data Converters

ADCs (Continued)

		Sample	Number of									
	Res.	Rate	Input		Input Voltage		Linearity	NMC ²	SINAD	Power		
Device	(Bits)	(kSPS)	Channels ¹	Interface	(V)	V _{REF}	(%)	(Bits)	(dB)	(mW)	Package(s)	Price ³
ADS8383	18	500	1 SE	P8/P16/P18	(V _{REF}) +4.1 V	Ext	0.006	18	85	110	TQFP-48	14.98
ADS1202	16	10 MHz Ck	1 SE/1 Diff	Modulator	±0.3	Int/Ext	0.018	16	—	30	TSSOP-8	2.95
ADS1605	16	5000	1Diff	P16	±3.75	Int/Ext	0.0015	16	—	570	TQFP-64	32.05
ADS8411	16	2000	1 SE	P8/P16	(V _{REF}) +4.1 V	Int	0.00375	16	87	155	TQFP-48	20.00
ADS8412	16	2000	1 Diff	P8/P16	$\pm V_{REF}$ (4.1 V) at ½ V_{REF}	Int	0.00375	16	90	155	TQFP-48	21.00
ADS8401	16	1250	1 SE	P8/P16	+4, V _{REF}	Int	0.00375	16	85	155	TQFP-48	11.95
ADS8402	16	1250	1 Diff	P8/P16	$\pm V_{REF}$ (4.1 V) at ½ V_{REF}	Int	0.00375	16	88	155	TQFP-48	12.52
ADS8371	16	850	1 SE	P8/P16	+4.2 V (V _{REF})	Ext	0.003	16	87	110	TOFP-48	9.99
ADS8322	16	500	1 Diff	P8/P16	5	Int/Ext	0.009	15	83	85	TOFP-32	7.15
ADS8323	16	500	1 Diff	P8/P16	±2.5 V at 2.5	Int/Ext	0.009	15	83	85	TQFP-32	7.15
ADS8361	16	500	2x2 Diff	Serial, SPI	±2.5 V at +2.5	Int/Ext	0.00375	14	83	150	SSOP-24	9.85
ADS8342	16	250	4 Diff	P8/P16	±2.5 at 0	Ext	0.006	16	85	200	TQFP-48	10.75
ADS7811	16	250	1 SE	P16	±2.5	Int/Ext	0.006	15	87	200	SOIC-28	34.41
ADS7815	16	250	1 SE	P16	±2.5	Int/Ext	0.006	15	84	200	SOIC-28	20.24
ADS8364	16	250	1x6 Diff	P16	±2.5 V at +2.5	Int/Ext	0.0045	14	82.5	413	TQFP-64	17.23
TLC4541	16	200	1 SE	Serial, SPI	V _{REF}	Ext	0.0045	16	84.5	17.5	SOIC-8, VSSOP-8	6.50
TLC4545	16	200	1 Diff	Serial, SPI	V _{REF}	Ext	0.0045	16	84.5	17.5	SOIC-8, VSSOP-8	6.50
ADS7805	16	100	1 SE	P8/P16	±10	Int/Ext	0.0045	16	86	81.5	PDIP-28, SOIC-28	20.75
ADS7809	16	100	1 SE	Serial, SPI	+4, 10, ±3.3, 5, 10	Int/Ext	0.0045	16	88	81.5	SOIC-20	20.75
ADS8320	16	100	1 Diff	Serial, SPI	V _{REF}	Ext	0.012	15	84	1.95	VSSOP-8	4.91
ADS8321	16	100	1 Diff	Serial, SPI	$\pm V_{REF}$ at $+V_{REF}$	Ext	0.012	15	84	5.5	VSSOP-8	4.91
ADS8325	16	100	1 Diff	Serial, SPI	V _{REF}	Ext	0.006	16	91	2.25	VSSOP-8, QFN-8	5.90
ADS8341	16	100	4 SE/2 Diff	Serial, SPI	V _{REF}	Ext	0.006	15	86	3.6	SSOP-16	7.08
ADS8343	16	100	4 SE/2 Diff	Serial, SPI	$\pm V_{REF}$ at $+V_{REF}$	Ext	0.006	15	86	3.6	SSOP-16	7.08
ADS8344	16	100	8 SE/4 Diff	Serial, SPI	V _{REF}	Ext	0.006	15	86	3.6	SSOP-20	7.59
ADS8345	16	100	8 SE/4 Diff	Serial, SPI	$\pm V_{REF}$ at $+V_{REF}$	Ext	0.006	15	85	3.6	SSOP-20	7.59
ADS7807	16	40	1 SE	Serial, SPI/P8	4, 5, ±10	Int/Ext	0.0022	16	88	28	PDIP-28, SOIC-28	26.06
ADS7813	16	40	1 SE	Serial, SPI	+4, 10, ±3.3, 5, 10	Int/Ext	0.003	16	89	35	PDIP-16, SOIC-16	20.24
ADS7825	16	40	4 SE	Serial, SPI/P8	±10	Int/Ext	0.003	16	83	50	PDIP-28, SOIC-28	28.15
ADS1110	16	0.240	1 SE/1 Diff	Serial, I ² C	PGA (1-8), ±2.048	Int	0.01	16	—	0.72	SOT23-6	1.95
ADS1112	16	0.240	3 SE/2 Diff	Serial, I ² C	PGA (1-8), ±2.048	Int	0.01	16	—	0.675	MSOP-10	2.49
ADS1100	16	0.128	1 SE/1 Diff	Serial, I ² C	PGA (1-8), V _{DD}	Ext	0.0125	16		0.27	SOT23-6	1.75
TLC3541	14	200	1 SE	Serial, SPI	V _{REF}	Ext	0.006	14	81.5	17.5	SOIC-8, VSSOP-8	4.73
TLC3544	14	200	4 SE/2 Diff	Serial, SPI	4	Int/Ext	0.006	14	81	20	SOIC-20, TSSOP-20	5.72
TLC3545	14	200	1 Diff	Serial, SPI	V _{REF}	Ext	0.006	14	81.5	17.5	SOIC-8, VSSOP-8	4.73
TLC3548	14	200	8 SE/4 Diff 4 SE/2 Diff	Serial, SPI	4	Int/Ext	0.006	14	81	20	SOIC-24, TSSOP-24	6.05
TLC3574 TLC3578	14 14	200	4 SE/2 Diff 8 SE/4 Diff	Serial, SPI	±10 ±10	Ext Ext	0.006	14 14	79 79	29 29	SOIC-24, TSSOP-24	6.50 7.67
		200		Serial, SPI							SOIC-24, TSSOP-24	
ADS8324 ADS7871	14 14	50 40	1 Diff 8 SE/4 Diff	Serial, SPI Serial, SPI	±V _{REF} at +V _{REF} PGA (1, 2, 4, 8, 10, 16, 20)	Ext	0.012 0.03	14 13	78	2.5 6	VSSOP-8 SSOP-28	3.95 4.75
ADS78/1	12	1000	12 Diff	Serial, SPI/P12	±2.5 at +2.5	Int	0.03	11		175	TQFP-100	14.56
ADS7809	12	800	12 Dill 1 SE	P12	±2.5 at +2.5 ±10	Int Int/Ext	0.048	12		225	SOIC-28	26.44
ADS7810	12	500	1 Diff	Serial, SPI	5	Int	0.018	12	70	11	PDIP-8, VSSOP-8	2.35
ADS7818	12	500	1 Diff	Serial, SPI	2.5	Int	0.024	12	70	11	VSSOP-8	2.33
ADS7834	12		1 Diff	Serial, SPI	±2.5		0.024		70	17.5	VSSOP-8	
ADS7835 ADS7852	12	500 500	8 SE	P12	±2.5 5	Int Int/Ext	0.024	12 12	72	17.5	TQFP-32	2.65 3.25
ADS7852 ADS7861	12	500	2x2 Diff	Serial, SPI	5 ±2.5 at +2.5	Int/Ext	0.024	12	72	25	SSOP-24	3.25
ADS7862	12	500	2x2 Diff	P12	±2.5 at +2.5	Int/Ext	0.024	12	70	25	TQFP-32	5.45
ADS7862	12	500	3x2 Diff	P12	±2.5 at +2.5	Int/Ext	0.024	12	71	52.5	TQFP-48	6.35
TLC2551	12	400	1 SE	Serial, SPI	V _{REF}	Ext	0.024	12	72	15	SOIC-8, VSSOP-8	3.72
TLC2552	12	400	2 SE	Serial, SPI	V _{REF}	Ext	0.024	12	72	15	SOIC-8, VSSOP-8	3.72
TLC2552	12	400	4 SE	Serial, SPI	VREF 4	Int/Ext	0.024	12	71	9.5	SOIC-16, TSSOP-16	5.04
TLC2555	12	400	1 Diff	Serial, SPI	4 V _{REF}	Ext	0.024	12	72	15	SOIC-8, VSSOP-8	3.72
1 202000	12	100			* REF	LAC	0.024	12	12	13		0.72

¹SE = Single Ended, Diff = Differential. ²NMC = no missing code resolution.
 ³Suggested resale price in U.S. dollars in quantities of 1,000. For current pricing, visit www.ti.com or dataconverter.ti.com

Data Converters

ADCs (Continued)

		Sample	Number of									
Device	Res. (Bits)	Rate (kSPS)	Input Channels ¹	Interface	Input Voltage (V)	V _{REF}	Linearity (%)	NMC ² (Bits)	SINAD (dB)	Power (mW)	Package(s)	Pric
LC2558	12	400	8 SE	Serial, SPI	4	Int/Ext	0.024	12	71	9.5	SOIC-20, TSSOP-20	5.0
DS7800	12	333	1 SE	P8/P12	±5, 10	Int	0.012	12	72	135	CDIP SB-24, PDIP-24	28.6
DS7816	12	200	1 Diff	Serial, SPI	V _{REF}	Ext	0.012	12	72	1.9	PDIP-8, SOIC-8, VSSOP-8	1.8
DS7810	12	200	1 Diff	Serial, SPI		Ext	0.024	12	72	2.3	SOIC-8, VSSOP-8	1.0
		200	4 SE/2 Diff	Serial, SPI	±V _{REF} at +V _{REF}	Ext	0.024	12	72	0.84	SSOP-16	
DS7841	12				V _{REF}						SSOP-28	2.4
DS7842	12	200	4 SE	P12	V _{REF}	Ext	0.024	12	72	0.84		2.9
ADS7844	12	200	8 SE/4 Diff	Serial, SPI	V _{REF}	Ext	0.024	12	72	0.84	SSOP-20	2.8
LC2574	12	200	4 SE	Serial, SPI	+2, 4	Ext	0.024	12	79	29	SOIC-20, TSSOP-20	4.6
LC2578	12	200	8 SE	Serial, SPI	V _{REF}	Ext	0.024	12	79	29	SOIC-24, TSSOP-24	5.1
LV2541	12	200	1 SE	Serial, SPI	V _{REF}	Ext	0.024	12	72	2.8	SOIC-8, VSSOP-8	3.0
LV2542	12	200	2 SE	Serial, SPI	V _{REF}	Ext	0.024	12	72	2.8	SOIC-8, VSSOP-8	3.6
LV2544	12	200	4 SE	Serial, SPI	+2, 4	Int/Ext	0.024	12	70	3.3	SOIC-16, TSSOP-16	3.9
LV2545	12	200	1 Diff	Serial, SPI	+5.5 (V _{REF} = V _{DD})	Ext	0.024	12	72	2.8	SOIC-8, VSSOP-8	3.6
LV2548	12	200	8 SE	Serial, SPI	+2, 4	Int/Ext	0.024	12	70	3.3	SOIC-20, TSSOP-20	4.5
LV2553	12	200	11 SE	Serial, SPI	V _{REF}	Ext	0.024	12	—	2.43	SOIC-20, TSSOP-20	3.4
LV2556	12	200	11 SE	Serial, SPI	V _{REF}	Int/Ext	0.024	12	—	2.43	SOIC-20, TSSOP-20	3.
ADS7829	12	125	1 Diff	Serial, SPI	V _{REF}	Ext	0.018	12	71	0.6	QFN-8	1.4
ADS7804	12	100	1 SE	P8/P16	±10	Int/Ext	0.011	12	72	81.5	PDIP-28, SOIC-28	13.3
ADS7808	12	100	1 SE	Serial, SPI	+4, 10 , ±3.3, 5, 10	Int/Ext	0.011	12	73	81.5	S0IC-20	10.3
AMC7820	12	100	8 DAS	Serial, SPI	+5	Int	0.024	12	72 (typ)	40	TQFP-48	9.1
/ECANA01	12	78	10 Diff	Serial x3	PGA (1, 1.25, 2.5, 5), ±2.5	Int	0.048	12	_	225	PLCC-68	24.0
ADS7822	12	75	1 Diff	Serial, SPI	V _{REF}	Ext	0.018	12	71	0.6	PDIP-8, SOIC-8, VSSOP-8,	1.4
ADS7823	12	50	1 SE	Serial, I ² C	V _{REF}	Ext	0.024	12	71	0.75	VSSOP-8	2.7
ADS7828	12	50	8 SE/4 Diff	Serial, I ² C	V _{REF}	Int/Ext	0.024	12	71	0.675	TSSOP-16	3.3
ADS7870	12	50	8 SE	Serial, SPI	PGA (1, 2, 4, 8, 10, 16, 20)	Int	0.06	12	72	4.6	SSOP-28	3.9
ADS7806	12	40	1 SE	Serial, SPI/P8	+4, 5, ±10	Int/Ext	0.011	12	73	28	PDIP-28, SOIC-28	12.
ADS7812	12	40	1 SE	Serial, SPI	+4, 10, ±3.3, 5, 10	Int/Ext	0.012	12	74	35	PDIP-16, SOIC-16	11.3
ADS7824	12	40	4 SE	Serial, SPI/P8	±10	Int/Ext	0.012	12	73	50	PDIP-28, SOIC-28	12.4
ADS1286	12	37	1 Diff	Serial, SPI	V _{REF}	Ext	0.024	12	72	1	PDIP-8, SOIC-8	3.0
TLC1514	10	400	4 SE/3 Diff	Serial, SPI	+5.5 (V _{REF} = V _{DD})	Int/Ext	0.012	10	60	10	SOIC-16, TSSOP-16	2.7
LC1518	10	400	8 SE/7 Diff	Serial, SPI	+5.5 (V _{REF} = V _{DD})	Int/Ext	0.012	10	60	10	SOIC-20, TSSOP-20	3.2
ADS7826	10	200	1 Diff	Serial, SPI	V _{REF} V _{DD}	Ext	0.0048	10	62	0.6	QFN-8	1.2
LV1504	10	200	4 SE	Serial, SPI		Int/Ext	0.0048	10	60	3.3	SOIC-16, TSSOP-16	2.
				Serial, SPI	+2, 4						SOIC-10, TSSOP-10 SOIC-20, TSSOP-20	
FLV1508	10	200	8 SE		+2, 4	Int/Ext	0.05	10	60	3.3	,	3.0
FLC1550	10	164	1 SE	P10	V _{REF}	Ext	0.05	10	—	10	PLCC-28, SOIC-24	3.7
FLC1551	10	164	1 SE	P10	V _{REF}	Ext	0.1	10	-	10	PLCC-28, SOIC-24	3.1
FLV1544	10	85	4 SE	Serial, SPI	V _{REF}	Ext	0.1	10	—	1.05	SOIC-16, TSSOP-16	1.8
FLV1548	10	85	8 SE	Serial, SPI	V _{REF}	Ext	0.1	10	_	1.05	CDIP-20, LCCC-20, SSOP-20	2.
FLC1542	10	38	11 SE	Serial, SPI	V _{REF}	Ext	0.05	10	—	4	CDIP-20, LCCC-20, PDIP-20, PLCC-20, SOIC-20	2.3
FLV1543	10	38	11 SE	Serial, SPI	V _{REF}	Ext	0.1	10	_	2.64	CDIP-20, LCCC-20, PDIP-20, PLCC-20, SOIC-20, SSOP-20	2.0
LV1549	10	38	1 SE	Serial, SPI	V _{REF}	Ext	0.1	10	—	1.32	PDIP-8, SOIC-8	1.
LC1541	10	32	11 SE	Serial, SPI	V _{REF}	Ext	0.1	10	—	6	PDIP-20, PLCC-20, SOIC-20	3.
LC0820A	8	392	1 SE	P8	V _{REF}	Ext	0.2	8	—	37.5	PLCC-20, SOIC-20, SSOP-20	1.7
DS7827	8	250	1 Diff	Serial, SPI	V _{REF}	Ext	0.2	8	48	0.6	QFN-8	0.9
LC545	8	76	19 SE	Serial, SPI	V _{REF}	Ext	0.2	8		6	PDIP-28, PLCC-28	2.9
LC540	8	75	11 SE	Serial, SPI	V _{REF}	Ext	0.2	8	_	6	PDIP-20, PLCC-20, SOIC-20	1.
LV0831	8	49	1 SE	Serial, SPI	+3.6 (V _{REF} = V _{DD})	Ext	0.2	8		0.66	PDIP-8, SOIC-8	1.
LC548	8	45.5	1 SE	Serial, SPI	V _{REF}	Ext	0.2	8	_	9	PDIP-8, SOIC-8	1.
LV0832	8	44.7	2 SE/1 Diff	Serial, SPI	V _{REF}	Ext	0.2	8		5	PDIP-8, SOIC-8	1.
LV0834	8	41	4 SE/2 Diff	Serial, SPI	V _{REF}	Ext	0.2	8	_	0.66	PDIP-14, SOIC-14, TSSOP-14	1.
LC541	8	40	11 SE	Serial, SPI	V _{REF}	Ext	0.2	8		6	PDIP-20, PLCC-20, SOIC-20	1.
	5	10	11 OL	Serial, SPI	• KEF	LAL	0.2	5		5	. 2.11 20, 1 200 20, 0010 20	

¹SE = Single Ended, Diff = Differential. ²NMC = no missing code resolution.

³Suggested resale price in U.S. dollars in quantities of 1,000. For current pricing, visit www.ti.com or dataconverter.ti.com

46

Data Converters

ADCs (Continued)

Device	Res. (Bits)	Sample Rate (kSPS)	Number of Input Channels ¹	Interface	Input Voltage (V)	V _{REF}	Linearity (%)	NMC ² (Bits)	SINAD (dB)	Power (mW)	Package(s)	Price ³
TLV0838	8	37.9	8 SE/4 Diff	Serial, SPI	V _{REF}	Ext	0.2	8	_	0.66	PDIP-20, SOIC-20, TSSOP-20	1.38
TLC0831	8	31	1 Diff	Serial, SPI	V _{REF}	Ext	0.2	8	—	3	PDIP-8, SOIC-8	1.32
TLC542	8	25	11 SE	Serial, SPI	V _{REF}	Ext	0.2	8		6	PDIP-20, PLCC-20, SOIC-20	1.42
TLC0832	8	22	2 SE/1 Diff	Serial, SPI	V _{REF}	Ext	0.2	8	—	12.5	PDIP-8, SOIC-8	1.32
TLC0834	8	20	4 SE/2 Diff	Serial, SPI	V _{REF}	Ext	0.2	8	—	3	PDIP-14, SOIC-14	1.38
TLC0838	8	20	8 SE/4 Diff	Serial, SPI	V _{REF}	Ext	0.2	8	—	3	PDIP-20, SOIC-20, TSSOP-20	1.38
TLC7135	4.5 Dig	0.003	1 SE	MUX BCD	$\pm V_{REF}$	Ext	0.005	4.5 Dig	—	5	PDIP-28, SOIC-28	1.89

¹SE = Single Ended, Diff = Differential. ²NMC = no missing code resolution.

³Suggested resale price in U.S. dollars in quantities of 1,000. For current pricing, visit www.ti.com or dataconverter.ti.com

New devices are listed in **bold red**.

Intelligent ADCs

	ADC Resolution	Sample Rate	Number of Input	Input Voltage		CPU	Program Memory	Program Memory	SRAM	Power	DAC Output	
Device	(Bits)	(kSPS)	Channels	. (V)	V _{REF}	Core	(KB)	Туре	(KB)	(mW/V)	(Bits)	Price ³
MSC1200Y2	24	1	8 Diff / 8 SE	PGA (1-128), ± 2.5	Int	8051	4	Flash	0.1	4 / 2.7-5.25	8-bit IDAC	5.95
MSC1200Y3	24	1	8 Diff / 8 SE	PGA (1-128), ± 2.5	Int	8051	8	Flash	0.1	4 / 2.7-5.25	8-bit IDAC	6.45
MSC1210Y2	24	1	8 Diff / 8 SE	PGA (1-128), ± 2.5	Int	8051	4	Flash	1.2	4 / 2.7-5.25	16-bit PWM	8.95
MSC1210Y3	24	1	8 Diff / 8 SE	PGA (1-128), ± 2.5	Int	8051	8	Flash	1.2	4 / 2.7-5.25	16-bit PWM	9.49
MSC1210Y4	24	1	8 Diff / 8 SE	PGA (1-128), ± 2.5	Int	8051	16	Flash	1.2	4 / 2.7-5.25	16-bit PWM	10.74
MSC1210Y5	24	1	8 Diff / 8 SE	PGA (1-128), ± 2.5	Int	8051	32	Flash	1.2	4 / 2.7-5.25	16-bit PWM	12.26
MSC1211Y2 ¹	24	1	8 Diff / 8 SE	PGA (1-128), ± 2.5	Int	8051	4	Flash	1.2	4 / 2.7-5.25	4x16-bit I/VDAC ²	16.65
MSC1211Y3 ¹	24	1	8 Diff / 8 SE	PGA (1-128), ± 2.5	Int	8051	8	Flash	1.2	4 / 2.7-5.25	4x16-bit I/VDAC ²	17.20
MSC1211Y4 ¹	24	1	8 Diff / 8 SE	PGA (1-128), ± 2.5	Int	8051	16	Flash	1.2	4 / 2.7-5.25	4x16-bit I/VDAC ²	18.45
MSC1211Y5 ¹	24	1	8 Diff / 8 SE	PGA (1-128), ± 2.5	Int	8051	32	Flash	1.2	4 / 2.7-5.25	4x16-bit I/VDAC ²	19.95
MSC1212Y2 ¹	24	1	8 Diff / 8 SE	PGA (1-128), ± 2.5	Int	8051	4	Flash	1.2	4 / 2.7-5.25	4x16-bit I/VDAC ²	16.15
MSC1212Y3 ¹	24	1	8 Diff / 8 SE	PGA (1-128), ± 2.5	Int	8051	8	Flash	1.2	4 / 2.7-5.25	4x16-bit I/VDAC ²	16.70
MSC1212Y4 ¹	24	1	8 Diff / 8 SE	PGA (1-128), ± 2.5	Int	8051	16	Flash	1.2	4 / 2.7-5.25	4x16-bit I/VDAC ²	17.95
MSC1212Y5 ¹	24	1	8 Diff / 8 SE	PGA (1-128), ± 2.5	Int	8051	32	Flash	1.2	4 / 2.7-5.25	4x16-bit I/VDAC ²	19.45
¹ MSC1211 includ	les four 16-bit	DACs.								Nen	devices are listed in	bold red.

²All four DACs default to "voltage out" or alternately up to two DACs can be configured as "current out".

³Suggested resale price in U.S. dollars in quantities of 1,000.

For current pricing, visit dataconverter.ti.com

High-Speed DACs

	Resolution	Number of		Update Rate	DNL	INL	Supply Voltage	Power		
Device	(Bits)	Output DACs	Interface	(MSPS)	(±LSB)	(±LSB)	(V)	(mW)	Package	Price ¹
DAC2902	12	2	Parallel	125	2.5	3	3.0 to 5.5	310	TQFP-48	10.70
DAC902	12	1	Parallel	200	1.75	2.5	2.7 to 5.5	170	SO-28, TSSOP-28	5.95
DAC2932	12	2	Parallel	40	0.5	2	2.7 to 3.3	25	TQFP-48	8.35
DAC2900	10	2	Parallel	125	1	1	3.0 to 5.5	310	TQFP-48	7.60
DAC900	10	1	Parallel	200	0.5	1	2.7 to 5.5	170	SO-28, TSSOP-28	4.20
DAC908	8	1	Parallel	200	0.5	0.5	2.7 to 5.5	170	SO-28, TSSOP-28	3.15

¹Suggested resale price in U.S. dollars in quantities of 1,000.

For current pricing, visit dataconverter.ti.com

Data Converters

 JF	40	5

DACs												
Device	Architecture	Res. (Bits)	Settling Time (µs)	Number of Output DACs	Interface	Output (V)	V _{REF}	Linearity (%)	Monotonic (Bits)	Power (mW) (typ)	Package(s)	Price
DAC7731	R-2R	16	5	1	Serial, SPI	+10, ±10	Int/Ext	0.0015	16	100	SSOP-24	7.80
DAC7741	R-2R	16	5	1	P16	±10	Int/Ext	0.0015	16	100	LQFP-48	8.30
DAC712	R-2R	16	10	1	P16	±10	Int	0.003	15	525	PDIP-28, SOIC-28	2.53
DAC714	R-2R	16	10	1	Serial, SPI	±10	Int	0.0015	16	525	PDIP-16, SOIC-16	12.53
DAC715	R-2R	16	10	1	P16	+10	Int	0.003	16	525	PDIP-28, SOIC-28	12.53
DAC716	R-2R	16	10	1	Serial, SPI	+10	Int	0.003	16	525	PDIP-16, SOIC-16	12.53
DAC7631	R-2R	16	10	1	Serial, SPI	+V _{REF} , ±V _{REF}	Ext	0.0015	15	1.8	SSOP-20	5.57
DAC7632	R-2R	16	10	2	Serial, SPI	$+V_{REF}, \pm V_{REF}$	Ext	0.0015	15	2.5	LQFP-32	9.94
DAC7634	R-2R	16	10	4	Serial, SPI	+V _{REF} , ±V _{REF}	Ext	0.0015	15	7.5	SSOP-48	18.98
DAC7641	R-2R	16	10	1	P16	+V _{REF} , ±V _{REF}	Ext	0.0015	15	1.8	TQFP-32	5.99
DAC7642	R-2R	16	10	2	P16	+V _{REF} , ±V _{REF}	Ext	0.0015	15	2.5	LQFP-32	10.04
DAC7643	R-2R	16	10	2	P16	$+V_{REF}, \pm V_{REF}$	Ext	0.0015	15	2.5	LQFP-32	10.04
DAC7644	R-2R	16	10	4	P16	+V _{REF} , ±V _{REF} +V _{REF} , ±V _{REF}	Ext	0.0015	15	7.5	SSOP-48	18.98
DAC7734	R-2R	16	10	4	Serial, SPI	$+V_{REF}, \pm V_{REF}$ + $V_{REF}, \pm V_{REF}$	Ext	0.0015	16	50	SSOP-48	29.94
DAC7742	R-2R	16	10		P16	±10	Int/Ext	0.0015	16	100	LQFP-48	8.30
DAC7744	R-2R	16		1	P16	±V _{REF}	Ext	0.0015		50	SSOP-48	
			10	4					16			29.94
DAC8501	String	16	10	1	Serial, SPI	+V _{REF} /MDAC	Ext	0.0987	16	0.72	VSSOP-8	2.83
DAC8531	String String	16	10	1	Serial, SPI	+V _{REF}	Ext	0.0987	16	0.72	VSSOP-8	2.83
DAC8532	String	16	10	2	Serial, SPI	+V _{REF}	Ext	0.0987	16	1.35	VSSOP-8	5.32
DAC8534	String	16	10	4	Serial, SPI	+V _{REF}	Ext	0.0987	16	0.42	VTSSOP-16	9.75
DAC8541	String	16	10	1	P16	+V _{REF}	Ext	0.096	16	0.72	TQFP-32	2.85
DAC8571	String	16	10	1	Serial, I ² C	+V _{REF}	Ext	0.0987	16	0.42	VSSOP-8	2.83
DAC8574	String	16	10	4	Serial, I ² C	+V _{REF}	Ext	0.0987	16	2.7	TSSOP-16	9.75
DAC7800	R-2R	12	0.8	2	Serial, SPI	1 mA	Ext	0.012	12	1	PDIP-16, SOIC-16	11.90
DAC7801	R-2R	12	0.8	2	P12	1 mA	Ext	0.012	12	1	PDIP-24, SOIC-24	15.26
DAC7802	R-2R	12	0.8	2	P12	1 mA	Ext	0.012	12	1	PDIP-24, SOIC-24	12.32
DAC7541	R-2R	12	1	1	P12	±1 mA	Ext	0.012	12	30	PDIP-18, SOP-18	6.40
DAC8043	R-2R	12	1	1	Serial, SPI	1 mA	Ext	0.012	12	2.5	SOIC-8	7.54
TLV5610	String	12	1	8	Serial, SPI	+V _{REF}	Ext	0.4	12	18	SOIC-20, TSSOP-20	9.41
TLV5613	String	12	1	1	P8	+V _{REF}	Ext	0.1	12	1.2	SOIC-20, TSSOP-20	2.70
TLV5619	String	12	1	1	P12	+V _{REF}	Ext	0.08	12	4.3	SOIC-20, TSSOP-20	2.70
TLV5630	String	12	1	8	Serial, SPI	+V _{REF}	Int/Ext	0.4	12	18	SOIC-20, TSSOP-20	9.02
TLV5633	String	12	1	1	P8	+2, 4	Int/Ext	0.08	12	2.7	SOIC-20, TSSOP-20	4.46
TLV5636	String	12	1	1	Serial, SPI	+2, 4	Int/Ext	0.1	12	4.5	SOIC-8, VSSOP-8	3.82
TLV5638	String	12	1	2	Serial, SPI	+2, 4	Int/Ext	0.1	12	4.5	SOIC-8, CDIP-8, LCCC-20	3.92
TLV5639	String	12	1	1	P12	+2, 4	Int/Ext	0.1	12	2.7	SOIC-20, TSSOP-20	3.58
DAC7545	R-2R	12	2	1	P12	±1 mA	Ext	0.012	12	30	SOIC-20	5.00
TLV5618A	String	12	2.5	2	Serial, SPI	+V _{REF}	Ext	0.08	12	1.8	CDIP-8, PDIP-8, SOIC-8, LCCC-20	4.25
TLV5614	String	12	3	4	Serial, SPI	+V _{REF}	Ext	0.1	12	3.6	SOIC-16, TSSOP-16	7.74
TLV5616	String	12	3	1	Serial, SPI	+V _{REF}	Ext	0.1	12	0.9	VSSOP-8, PDIP-8, SOIC-8	2.70
DAC811	R-2R	12	4	1	P12	+10, ±5, 10	Int	0.006	12	625	CDIP SB-28, PDIP-28, SOIC-28	10.92
DAC813	R-2R	12	4	1	P12	+10, ±5, 10	Int/Ext	0.006	12	270	PDIP-28, SOIC-28	10.96
DAC7512	String	12	10	1	Serial, SPI	+ V _{CC}	Ext	0.38	12	0.345	VSSOP-8, SOT23-6	1.37
DAC7513	String	12	10	1	Serial, SPI	V _{REF}	Ext	0.38	12	0.3	VSSOP-8, SSOP-8	1.37
DAC7571	String	12	10	1	Serial, I ² C	+V _{REF}	Ext	0.096	12	0.85	PLCC-8	1.37
DAC7574	String	12	10	4	Serial, I ² C	+V _{REF}	Ext	0.096	12	0.85	SSOP-14	4.86
DAC7611	R-2R	12	10	1	Serial, SPI	+4	Int	0.012	12	5	PDIP-8, SOIC-8	2.39
DAC7612	R-2R	12	10	1	Serial, SPI	+4	Int	0.012	12	3.5	SOIC-8	2.53
		14	10									2.07

¹Suggested resale price in U.S. dollars in quantities of 1,000.

For current pricing, visit dataconverter.ti.com

New devices are listed in **bold red**.

e

Data Converters

48

DACs (Continued)

		Res.	Settling Time	Number of Output		Output		Linearity	Monotonic	Power (mW)		
Device	Architecture	(Bits)	(µs)	DACs	Interface	(V)	V _{REF}	(%)	(Bits)	(typ)	Package(s)	Price ¹
DAC7614	R-2R	12	10	4	Serial, SPI	$+V_{REF}, \pm V_{REF}$	Ext	0.012	12	15	PDIP-16, SOIC-16, SSOP-20	6.38
DAC7615	R-2R	12	10	4	Serial, SPI	$+V_{REF}, \pm V_{REF}$	Ext	0.012	12	15	PDIP-16, SOIC-16, SSOP-20	6.38
DAC7616	R-2R	12	10	4	Serial, SPI	+V _{REF} , ±V _{REF}	Ext	0.012	12	2.4	SOIC-16, SSOP-20	5.75
DAC7617	R-2R	12	10	4	Serial, SPI	+V _{REF} , ±V _{REF}	Ext	0.012	12	2.4	SOIC-16, SSOP-20	5.75
DAC7621	R-2R	12	10	1	P12	+4	Int	0.012	12	2.5	SSOP-20	2.62
DAC7624	R-2R	12	10	4	P12	±V _{REF}	Ext	0.012	12	15	PDIP-28, SOIC-28	9.26
DAC7625	R-2R	12	10	4	P12	±V _{REF}	Ext	0.012	12	15	PDIP-28, SOIC-28	9.26
DAC7714	R-2R	12	10	4	Serial, SPI	±V _{REF}	Ext	0.012	12	45	SOIC-16	10.88
DAC7715	R-2R	12	10	4	Serial, SPI	±V _{REF}	Ext	0.012	12	45	SOIC-16	10.88
DAC7724	R-2R	12	10	4	P12	±V _{REF}	Ext	0.012	12	45	PLCC-28, SOIC-28	11.85
DAC7725	R-2R	12	10	4	P12	±V _{REF}	Ext	0.012	12	45	PLCC-28, SOIC-28	11.85
TLV5637	String	10	0.8	2	Serial, SPI	+2, 4	Int/Ext	0.1	10	4.2	SOIC-8	4.30
TLV5608	String	10	1	8	Serial, SPI	+V _{REF}	Ext	0.4	10	18	SOIC-20, TSSOP-20	4.74
TLV5631	String	10	1	8	Serial, SPI	+V _{REF}	Int/Ext	0.4	10	18	SOIC-20, TSSOP-20	5.12
TLV5617A	String	10	2.5	2	Serial, SPI	+V _{REF}	Ext	0.1	10	1.8	SOIC-8	2.90
UCC5950	String	10	2.5	1	Serial, SPI	+1.1, 3.2	Int	0.2	10	7.5	PDIP-8, SOIC-8	1.39
TLV5604	String	10	3	4	Serial, SPI	+V _{REF}	Ext	0.05	10	3	SOIC-16, TSSOP-16	3.86
TLV5606	String	10	3	1	Serial, SPI	+V _{REF}	Ext	0.15	10	0.9	SOIC-8, VSSOP-8	1.35
TLC5615	String	10	12.5	1	Serial, SPI	+V _{REF}	Ext	0.1	10	0.75	PDIP-8, SOIC-8, VSSOP-8	1.85
TLC7524	R-2R	8	0.1	1	P8	1mA	Ext	0.2	8	5	PDIP-16, PLCC-20, SOIC-16, TSSOP-16	1.44
TLC7528	R-2R	8	0.1	2	P8	1mA	Ext	0.2	8	7.5	PDIP-20, PLCC-20, SOIC-20, TSSOP-20	1.52
TLC7628	R-2R	8	0.1	2	P8	2mA	Ext	0.2	8	20	SOIC-20, PDIP-20	1.36
TLV5626	String	8	0.8	2	Serial, SPI	+2, 4	Int/Ext	0.4	8	4.2	SOIC-8	2.22
TLV5624	String	8	1	1	Serial, SPI	+2, 4	Int/Ext	0.2	8	0.9	SOIC-8, VSSOP-8	1.65
TLV5629	String	8	1	8	Serial, SPI	+V _{REF}	Ext	0.4	8	18	SOIC-20, TSSOP-20	2.99
TLV5632	String	8	1	8	Serial, SPI	+2, 4	Int/Ext	0.4	8	18	SOIC-20, TSSOP-20	3.19
TLV5627	String	8	2.5	4	Serial, SPI	+V _{REF}	Ext	0.2	8	3	SOIC-16, TSSOP-16	2.69
TLV5623	String	8	3	1	Serial, SPI	+V _{REF}	Ext	0.2	8	2.1	SOIC-8, VSSOP-8	1.15
TLV5625	String	8	3	2	Serial, SPI	+V _{REF}	Ext	0.2	8	2.4	SOIC-8	1.74
TLC7225	R-2R	8	5	4	P8	+V _{REF}	Ext	0.4	8	75	SOIC-24	2.20
TLC7226	R-2R	8	5	4	P8	+V _{REF}	Ext	0.4	8	90	PDIP-20, SOIC-20	2.11
TLC5620	String	8	10	4	Serial, SPI	+V _{REF}	Ext	0.4	8	8	PDIP-14, SOIC-14	1.42
TLC5628	String	8	10	8	Serial, SPI	+V _{REF}	Ext	0.4	8	15	PDIP-16, SOIC-16	2.32
TLV5620	R-2R	8	10	4	Serial, SPI	+V _{REF}	Ext	0.2	8	6	PDIP-14, SOIC-14	1.00
TLV5621	R-2R	8	10	4	Serial, SPI	+V _{REF}	Ext	0.4	8	3.6	SOIC-14	1.74
TLV5628	String	8	10	8	Serial, SPI	+V _{REF}	Ext	0.4	8	12	PDIP-16, SOIC-16	2.32
	rocalo prico in II 9		in accontitio	a af 1,000		NEF					Now dovious are listed in	

¹Suggested resale price in U.S. dollars in quantities of 1,000.

For current pricing, visit dataconverter.ti.com

Voltage References

49

G

←

Voltage References

Device	Description	Output (V)	Initial Accuracy (%) (max)	Drift (ppm/°C) (max)	Long-Term Stability (ppm/kHr) (typ)	Noise 0.1 Hz to 10 Hz (µVp-p) (typ)	I _Q (mA) (max)	Temperature Range (°C)	Package(s)	Price ¹
REF29xx	Micropower bandgap	1.25, 2.048, 2.5, 3.0, 3.3, 4.096	2.00%	100	24	20 - 45	0.05	-40 to +125	S0T23-3	0.49
REF30xx	Micropower bandgap	1.25, 2.048, 2.5, 3.0, 3.3, 4.096	0.20%	50	24	20 - 45	0.05	-40 to +125	S0T23-3	0.59
REF31xx	Precision micropower	1.25, 2.048, 2.5, 3.0, 3.3, 4.096	0.20%	15	24	15 - 30	0.1	-40 to +125	S0T23-3	1.10
REF02A/B	Low drift, low noise, buried Zener	5.0	0.19%/0.13%	10/5	50	4	1.4	-25 to +85	PDIP-8, SOIC-8	1.65/2.27
REF102A/B/C	Low drift, low noise, buried Zener	10.0	0.1%/0.05%/ 0.025%	10/5/2.5	20	5	1.4	-25 to +85	PDIP-8, SOIC-8	1.65/4.15/ 4.85
REF200	Dual current reference with current mirror	Two 100 µA	±1 μA	25 (typ)	_	—	—	-25 to +85	PDIP-8, SOIC-8	2.54

¹Suggested resale price in U.S. dollars in quantities of 1,000. For a complete product listing visit **amplifier.ti.com**

For current pricing and complete product listing, visit dataconverter.ti.com

New devices are listed in **bold red**.

Microcontrollers

MSP430 Ultra-Low-Power Microcontrollers

					Watch-	Timer_A	Timer_B				Brown-						
				LCD	dog	16-Bit	16-Bit				Out				Additional		
Device ¹	Program	SRAM	I/0	Seg	16-Bit	No. of C/C ²	No. of C/C ²	USART	l ² C	SVS	Reset	MPY	Comp_A	ADC	Analog	Pins/Packages	Price ³
Flash/ROM-B		x Famil	y V _{cc}	1.8 to 3	.6 V												
MSP430F1101A	1 KB	128	14	—	 ✓ 	3	-	—	—	—	—	—	v	slope	—	20 DGV, DW, PW, 24 RGE	0.99
MSP430C1101	1 KB	128	14	—	 ✓ 	3	—	—	—	—	—	—	v	slope	—	20 DGV, DW, PW, 24 RGE	0.60
MSP430F1111A	2 KB	128	14	—	V	3	—	—	—	—	—	—	v	slope	—	20 DGV, DW, PW, 24 RGE	1.35
MSP430C1111	2 KB	128	14	—	V	3	-	—	—	—	—	—	v	slope	—	20 DGV, DW, PW, 24 RGE	1.10
MSP430F1121A	4 KB	256	14	—	V	3	—	—	—	—	—	—	v	slope	—	20 DGV, DW, PW, 24 RGE	1.70
MSP430C1121	4 KB	256	14	—	V	3	—	—	—	—	—	—	v	slope	—	20 DGV, DW, PW, 24 RGE	1.35
MSP430F1122	4 KB	256	14	—	V	3	—	—	—	—	v	—	—	5-ch ADC10	—	20 DW, PW, 32 RHB	2.00
MSP430C1122	4 KB	256	14	—	V	3	-	—	—	—	1	—	—	5-ch ADC10	—	20 DW, PW	1.50
MSP430F1132	8 KB	256	14	—	V	3	—	—	—	—	v	—	—	5-ch ADC10	—	20 DW, PW, 32 RHB	2.25
MSP430C1132	8 KB	256	14	—	V	3	—	—	—	—	v	—	—	5-ch ADC10	—	20 DW, PW	1.70
MSP430F122	4 KB	256	22	—	V	3	—	1	—	—	—	—	v	slope	—	28 DW,PW, 32 RHB	2.15
MSP430F123	8 KB	256	22	_	V	3	_	1	—	—	_	—	v	slope	—	28 DW,PW, 32 RHB	2.30
MSP430F1222	4 KB	256	22	—	V	3	—	1	—	—	v	—	—	8-ch ADC10	—	28 DW, PW, 32 RHB	2.40
MSP430F1232	8 KB	256	22	—	V	3	—	1	—	—	v	—	—	8-ch ADC10	—	28 DW,PW, 32 RHB	2.50
MSP430F133	8 KB	256	48	—	V	3	3	1	—	—	—	—	v	8-ch ADC12	—	64 PM, RTD, PAG	3.00
MSP430C1331	8 KB	256	48	—	V	3	3	1	—	—	—	—	v	slope	—	64 PM, RTD	2.00
MSP430F135	16 KB	512	48	—	V	3	3	1	—	—	—	—	v	8-ch ADC12	—	64 PM, RTD, PAG	3.60
MSP430C1351	16 KB	512	48	_	 ✓ 	3	3	1	—	—	_	—	v	slope	_	64 PM, RTD	2.30
MSP430F147	32 KB	1024	48	_	V	3	7	2	—	—	_	1	v	8-ch ADC12	_	64 PM, RTD, PAG	5.05
MSP430F1471	32 KB	1024	48	_	V	3	7	2	—	—	_	V	V	slope	_	64 PM, RTD	4.60
MSP430F148	48 KB	2048	48	_	~	3	7	2	—	—	_	1	V	8-ch ADC12	_	64 PM, RTD, PAG	5.75
MSP430F1481	48 KB	2048	48	_	V	3	7	2	—	—	_	V	V	slope	_	64 PM, RTD	5.30
MSP430F149	60 KB	2048	48	_	 ✓ 	3	7	2	—	—	_	1	v	8-ch ADC12	_	64 PM, RTD, PAG	6.05
MSP430F1491	60 KB	2048	48	_	~	3	7	2	—	—	_	V	V	slope	_	64 PM, RTD	5.60
MSP430F155	16 KB	512	48	_	~	3	3	1	V	1	1	_	V	8-ch ADC12	(2) DAC12	64 PM	4.95
MSP430F156	24 KB	1024	48	—	V	3	3	1	V	V	1	_	v	8-ch ADC12	(2) DAC12	64 PM	5.35

 $^{1}C = ROM, F = Flash.$

 $^{2}C/C = Capture/Compares.$

³Suggested resale price in U.S. dollars in quantities of 1,000. All devices support industrial temperature range.

Microcontrollers

50

 \rightarrow

MSP430 Ultra-Low-Power Microcontrollers (Continued)

					Watch-	Timer_A	Timer_B				Brown-						
				LCD	dog	16-Bit	16-Bit				Out				Additional		
Device ¹	Program	SRAM	I/0	Seg	16-Bit	No. of C/C ²	No. of C/C ²	USART	l ² C	SVS	Reset	MPY	Comp_A	ADC	Analog	Pins/Packages	Price ³
Flash/ROM-B	Based F1x	x Family	y V _{cc}	1.8 to 3.	6 V (Con	tinued)											
MSP430F157	32 KB	1024	48	—	v	3	3	1	v	~	v	—	v	8-ch ADC12	(2) DAC12	64 PM	5.85
MSP430F167	32 KB	1024	48	—	V	3	7	2	1	V	~	1	V	8-ch ADC12	(2) DAC12	64 PM	6.75
MSP430F168	48 KB	2048	48	—	v	3	7	2	1	V	~	1	v	8-ch ADC12	(2) DAC12	64 PM	7.45
MSP430F169	60 KB	2048	48	—	V	3	7	2	V	V	v	1	V	8-ch ADC12	(2) DAC12	64 PM	7.95
MSP430F1610	32 KB	5120	48	_	~	3	7	2	~	V	v	1	 ✓ 	8-ch ADC12	(2) DAC12	64 PM	8.25
MSP430F1611	48 KB	10240	48	—	V	3	7	2	V	V	~	1	V	8-ch ADC12	(2) DAC12	64 PM	8.65
MSP430F1612	55 KB	5120	48	—	v .	3	7	2	~	V	v	1	v	8-ch ADC12	(2) DAC12	64 PM	8.95
Flash/ROM-E	Based F4x	x Family	y Wit	h LCD D	river V _{CC}	1.8 to 3.6 \	V										
MSP430F412	4 KB	256	48	96	v	3	—	—	—	~	v	—	v	slope	—	64 PM, RTD	2.60
MSP430C412	4 KB	256	48	96	v	3	_	—	—	V	v	—	v	slope	—	64 PM, RTD	1.90
MSP430F413	8 KB	256	48	96	v	3	_	_	—	V	~	—	v	slope	_	64 PM, RTD	2.95
MSP430C413	8 KB	256	48	96	V	3	_	—	—	V	~	—	V	slope	_	64 PM, RTD	2.10
MSP430F423	8 KB	256	14	128	v -	3	_	1	_	V	~	—	_	(3) SD16	_	64 PM	4.50
MSP430F425	16 KB	512	14	128	V	3	_	1	_	V	~	_	_	(3) SD16	_	64 PM	4.95
MSP430F427	32 KB	1024	14	128	v	3	_	1	—	V	~	—	_	(3) SD16	_	64 PM	5.40
MSP430F435	16 KB	512	48	128/160	V	3	3	1	—	V	1	—	V	8-ch ADC12	_	80 PN, 100 PZ	4.45
MSP430F436	24 KB	1024	48	128/160	 V 	3	3	1		V	v		 ✓ 	8-ch ADC12	_	80 PN, 100 PZ	4.70
MSP430F437	32 KB	1024	48	128/160	V	3	3	1		V	1	_	v	8-ch ADC12	_	80 PN, 100 PZ	4.90
MSP430F447	32 KB	1024	48	160	 V 	3	7	2		V	v	V	 V 	8-ch ADC12	_	100 PZ	5.75
MSP430F448	48 KB	2048	48	160	~	3	7	2	_	V	v	V	v	8-ch ADC12	_	100 PZ	6.50
MSP430F449	60 KB	2048	48	160	v	3	7	2	_	V	V	~	v	8-ch ADC12	_	100 PZ	7.05

¹C = ROM, F = Flash.

 \rightarrow

 $^{2}C/C = Capture/Compares.$

³Suggested resale price in U.S. dollars in quantities of 1,000.

All devices support industrial temperature range.

Digital Temperature Sensors

Digital Temperature Sensors

Device	Supply Voltage (V)	Interface	–25 to 85°C Accuracy (°C max) ¹	Quiescent Current (µA max)	Resolution (Bits)	Programmable Temp Alert	Max Operating Temp (°C)	Package	Price ²
TMP100	2.7 to 5.5	2-wire	±2	45	9 to 12	_	150	SOT23	0.75
TMP101	2.7 to 5.5	2-wire	±2	45	9 to 12	V	150	SOT23	0.80
TMP121	2.7 to 5.5	SPI	±1.5	50	12	_	150	SOT23	0.90
TMP122	2.7 to 5.5	SPI	±1.5	50	9 to 12	V	150	SOT23	0.99
TMP123	2.7 to 5.5	SPI	±1.5	50	12	_	150	SOT23	0.90
TMP124	2.7 to 5.5	SPI	±1.5	50	12	_	150	SO-8	0.80
TMP75	2.7 to 5.5	2-wire	±1.5	50	9 to 12	v	127	SO-8	0.70
TMP175	2.7 to 5.5	2-wire	±1.5	50	9 to 12	v	127	SO-8	0.80

¹All digital temp sensors have ±0.5°C typical accuracy.

²Suggested resale price in U.S. dollars in quantities of 1,000.

Interface

LVDS Line Drivers and Receivers

	Max		Max	HBM							
	Drvr/Rcvr	Max	Supply	ESD			Output	Pulse			
	t _{pd}	Speed	Current	Protection			Skew	Skew	Package		
Device	(ns)	(Mbps)	(mA)	(kV)	# Inputs	# Outputs	(ps) ¹	(ps) ¹	Options	Comments	Price ²
SN65LVDS1	3.1	630	8	15	1 LVTTL	1 LVDS	-	300 typ	5-pin SOT-23,	Single driver	0.66
									8-pin SOIC		
SN65LVDS2	3.6	400	7	15	1 LVDS	1 LVTTL	-	600 max	5-pin SOT-23,	Single receiver	0.66
									8-pin SOIC		
SN65LVDS22	6	400	20	12	2 LVDS	2 LVDS	-	200 typ	16-pin SOIC, TSSOP	2:2 MUX (crosspoint)	3.01
SN65LVDS31	2.5	400	35	8	4 LVTTL	4 LVDS	300 max	300 max	16-pin SOIC, TSSOP	Quad driver	1.85
SN65LVDS32 ³	3	400	18	8	4 LVDS	4 LVTTL	300 max	400 max	16-pin SOIC, TSSOP	Quad receiver	1.85
SN65LVDS33 ³	6	400	23	15	4 LVDS	4 LVTTL	150 typ	200 typ	16-pin SOIC, TSSOP	Quad receiver	2.22
SN65LVDS047	2.8	400	26	8	4 LVTTL	4 LVDS	300 max	300 max	16-pin SOIC, TSSOP	Quad driver	1.83
SN65LVDS048A	3.7	400	15	10	4 LVDS	4 LVTTL	500 max	450 max	16-pin SOIC, TSSOP	Quad receiver	1.83
SN65LVDS386 ³	4	300	70	4	16 LVDS	16 LVTTL	400 max	600 max	64-pin TSSOP	16-ch. receiver	5.55
SN65LVDS387	2.9	630	95	15	16 LVTTL	16 LVDS	150 max	500 max	64-pin TSSOP	16-ch. receiver	5.55
SN75LVDS388A ³	4	300	40	4	8 LVDS	8 LVTTL	400 max	600 max	38-pin TSSOP	Octal receiver	3.25
SN65LVDS389	2.9	300	70	4	8 LVTTL	8 LVDS	150 max	500 max	38-pin TSSOP	Octal driver	3.25

 $^1R_L=100\,\Omega,\ C_L=10\ pF$ with max. spec. 2Suggested resale price in U.S. dollars in quantities of 1,000. 3Integrated termination option.

UARTs

		FIFOs	Baud Rate				
Device	Channels	(Bytes)	(Mbps) (max)	Voltage (V)	Pins/Package(s)	Description	Price ¹
TL16C450	1	0	0.256	5	40PDIP, 44PLCC	Single UART without FIFO	1.50
TL16C451	1	0	0.256	5	68PLCC	Single UART with parallel port and without FIFO	2.50
TL16C452	2	0	0.256	5	68PLCC	Dual UART with parallel port and without FIFO	2.55
TL16C550C	1	16	1	5, 3.3	48LQFP, 40PDIP, 44PLCC, 48TQFP	Single UART with 16-byte FIFOs and auto flow control	1.75
TL16C552/552A	2	16	1	5	68PLCC	Dual UART with 16-byte FIFOs and parallel port	3.85
TL16C554/554A	4	16	1	5	80LQFP, 68PLCC	Quad UART with 16-byte FIFOs	6.05
TL16C750	1	16 or 64	1	5, 3.3	64LQFP, 44PLCC	Single UART with 64-byte FIFOs, auto flow control,	3.70
						low-power modes	
TL16C752B	2	64	3	3.3	48LQFP	Dual UART with 64-byte FIFO	3.10
TL16C754B	4	64	5V-3, 3.3V-2	5, 3.3	80LQFP, 68PLCC	Quad UART with 64-byte FIFO	8.35
TL16PC564B/BLV	1	64	1	5, 3.3	100BGA, 100LQFP	Single UART with 64-byte FIFOs, PCMCIA interface	5.90
TL16PIR552	2	16	1	5	80QFP	Dual UART with 16-byte FIFOs, selectable IR and 1284 modes	6.10
TIR1000	0	None	0.115	2.7 to 5.5	8SOP, 8TSSOP	Stand-alone IrDA encoder and decoder	1.15
TUSB3410	0	None	0.922	3.3	32LQFP	RS232/IrDA serial-to-USB converter	2.50

¹Suggested resale price in U.S. dollars in quantities of 1,000.

USB Hub Controllers

				Voltage			
Device	Speed	Ports	I ² C	(V)	Package	Description	Price ¹
TUSB2036	Full (1.1)	2	No	3.3	32 LQFP	2/3-port hub for USB with optional serial EEPROM interface	1.15
TUSB2046B	Full (1.1)	4	No	3.3	32 LQFP	4-port hub for USB with optional serial EEPROM interface supporting Windows® 95/DOS mode	1.20
TUSB2077A	Full (1.1)	7	No	3.3	48 LQFP	7-port USB hub with optional serial EEPROM interface	1.95
TUSB2136	Full (1.1)	2	Yes	3.3	64 LQFP	2-port hub with integrated general-purpose function controller	3.25
TUSB5052	Full (1.1)	5	Yes	3.3	100 LQFP	5-port hub with integrated bridge to two serial ports	5.10

¹Suggested resale price in U.S. dollars in quantities of 1,000.

USB Peripherals

		Voltage	Remote			
Device	Speed	(V)	Wakeup	Package	Description	Price ¹
TUSB3210	Full	3.3	Yes	64 LQFP	USB full-speed general-purpose device controller	2.50
TUSB3410	Full	3.3	Yes	32 LOFP	RS232/IrDA serial-to-USB converter	2.25
TUSB6250	Full, High	3.3	Yes	80 TQFP	USB 2.0 high-speed ATA/ATAPI bridge solution	3.00

¹Suggested resale price in U.S. dollars in quantities of 1,000.

G

Interface

52

Ð

SerDes (Serial Gigabit Transceivers)

	J	/					
Device	Function	Data Rate	Serial I/F ¹	Parallel I/F	Power	Special Features	Price ²
TLK1501	Single-Ch. 16:1 SerDes	0.6-1.5 Gbps	1 CML	16 LVTTL	200 mW	Built-In Testability	8.00
TLK2501	Single-Ch. 16:1 SerDes	1.6-2.5 Gbps	1 CML	16 LVTTL	300 mW	Built-In Testability	12.00
TLK2701	Single-Ch. 16:1 SerDes	1.6-2.5 Gbps	1 CML	16 LVTTL	300 mW	Built-In Testability and	12.00
						K Character Control	
TLK2711	Single-Ch. 16:1 SerDes	1.6-2.5 Gbps	1 VML	16 LVTTL	350 mW	MicroStar Junior™ BGA	12.00
						Packaging	
TLK3101	Single-Ch. 16:1 SerDes	2.5-3.125 Gbps	1 VML	16 LVTTL	350 mW	Built-In Testability	16.00
TLK1201A	Single-Ch. 10:1 Gigabit	0.6-1.3	1 LVPECL	10 LVTTL	200 mW	Industrial Temperature	3.95
	Ethernet Xcvr Gbps						
TLK2201	Single-Ch.	1.0-1.6 Gbps	1 LVPECL	10 LVTTL	200 mW	JTAG; 5-Bit DDR Mode	3.95
TLK22011	Single-Ch.	1.2-1.6 Gbps	1 LVPECL	10 LVTTL	200 mW	JTAG; 5-Bit DDR Mode,	4.74
	10:1 Gigabit					Industrial Temperature Qualified	
	Ethernet Xcvr						
TLK2201JR	Single-Ch.	1.0-1.6 Gbps	1 LVPECL	10 LVTTL	200 mW	MicroStar Junior	3.95
	10:1 Gigabit					5 mm x 5 mm LGA	
	Ethernet Xcvr						
TLK1002	Two-Ch. Gigabit Signal	1.0-1.3 Gbps	2 VML	N/A	<300 mW	High Input Jitter Tolerance	Preview
	Ethernet Conditioner					<0.75 UI	
TLK2521	Single-Ch.	1.0-2.5 Gbps	1 VML	18 LVTTL	<550 mW	Low Power and Built-in	18.00
	18:1 SerDes					Equalization	
TLK1521	Single-Ch.	0.6-1.3 Gbps	1 VML	18 LVTTL	<350 mW	Low Power and Built-in	10.00
	18:1 SerDes					Equalization	
TLK4120	Four-Ch. 18:1 Serdes	0.5-1.3 Gbps	4 VML	18 LVTTL	<350 mW	Four-Channel Version of TLK1521	24.00
TLK4250	Four-Ch. 18:1 Serdes	1.0-2.5 Gbps	4 VML	18 LVTTL	<550 mW	Four-Channel Version of TLK2521	28.00
TLK2208B	Eight-Ch. of 10:1 Gigabit	1.0-1.3 Gbps	8 CML	4/5-Bit/Ch (Nibble	1 W	JTAG, MDIO Supported	30.00
	Ethernet Xcvr			DDR Mode), 8/10-Bit/Ch			
				(Multiplex Ch Mode)			
TLK2206	Six-Ch. 16:1 Gigabit	1.0-1.3 Gbps	6 VML	4/5-Bit RTBI or 8/10-Bit	<1 W	MDIO Supported	20.00
	Ethernet Xcvr			DDR Channel Mode			
TLK3104SA	Four-Ch. of 10/8:1 Xcvr	2.5-3.125 Gbps	4X 3.125 Gbps	4X 10/8-Bit	700 mW/ch.	JTAG; Programmable	55.00
			LVPECL (XAUI)	SSTL/HSTL		Pre-Emphasis and XAUI I/F	
TLK3104SC	Four-Ch. of 4.1: Xcvr	3.0-3.125 Gbps	4X	20X622	700 mW/ch.	JTAG, 8b/10b On/Off	120.00
			LVPECL	LVDS Lines			
TLK3114SC	Four-Ch. of 10/8:1: Xcvr	2.5-3.125 Gbps	4X 3.125 Gbps	4X 10/8-Bit	600 mW/ch.	IEEE 802.3ae	55.00
			LVPECL (XAUI)	SSTL/HSTL		Backplane Transceiver Compliant	
			(XGMII)				
TLK3118	Four Ch. 10/8:1 Xcvr w/	2.5-3.125 Gbps/ch.	4X 3.125	8/10 HSTLx4	<2 W	Full Redundancy for Four	Web
	(XAUI) Full Redundancy		LVPECL (XAUI)	(XGMII)		Channels (XAUI)	
TLK4015	Four-Ch. of 16:1 Xcvr	0.6-1.5 Gbps/ch.	4X CML	16 LVTTL/ch.	1 W	Four-Channel Version of TLK1501	28.00
SLK2501/2511	Single-Ch. 4:1 Multirate	OC-3/12/24/48	1 LVPECL	4X622 LVDS	900 mW	Auto-Rate Detection, Local and	40.00
011/0704/0704	SONET Xcvr with CDR		550			Remote Loop Back	
SLK2701/2721	Single-Ch. 4:1 Multirate	00	PECL	4 x LVDS	900 mW	FEC Rate Compatible, SLK2721 is	40.00
	SONET Xcvr with CDR	3/12/24/48	411/20		050 144	Optimized for Jitter Tolerance	0.70
SN65LVDS93/94	Four-Ch. 28:4 TX/RX	140-455 Mbps/ch.	4 LVDS	28 LVTTL	250 mW/chip	Supports up to 1.82 Gbps	3.73
	Chipset		411/20	0011	050 110	Throughout	0.70
SN65LVDS95/96	Three-Ch. 21:3 TX/RX	140-455 Mbps/ch.	4 LVDS	28 LVTTL	250 mW/chip	Supports up to 1.82 Gbps	3.73
010511/4004/4046	Chipset	100 400 14	111/20	1011/771	400 14/	Throughout	F 00
SN65LV1021/1212	Single-Ch. 10:1 TX/RX	100-400 Mbps	1 LVDS	10 LVTTL	<400 mW	Low Power Solution	5.00
CNICELV/1000/10043	Chipset	200.000.14	111/00	10 11 (777)	Total	Law Davies Calus'	F 00
SN65LV1023/1024 ³	Single-Ch. 10:1 TX/RX	300-660 Mbps	1 LVDS	10 LVTTL	<400 mW	Low Power Solution	5.20
	Chipset				Total		

¹CML = Current Mode Logic; VML = Voltage Mode Logic.

²Suggested resale price in U.S. dollars in quantities of 1,000. ³'A' revision will support 100 to 660 Mbps.

Preview devices are listed in **bold blue**.

Interface

53

A

PCI CardBus Controllers

	Voltage	D3	Integrated	Integrated	Pin/		
Device	(V)	Cold Wake	1394	ZV	Package(s)	Description	Price ¹
PCI1510	3.3	Yes	No	No	144BGA, 144LQFP	Single Slot PC CardBus Controller	3.60
PCI1520	3.3	Yes	No	No	209BGA, 208LQFP	PC Card Controller	4.35
PCI1620	1.8, 3.3, 5	Yes	No	No	209BGA, 208LQFP	PC Card, Flash Media, and Smart Card Controller	7.35
PCI4510	3.3	Yes	Yes	No	209BGA, 208LQFP	PC Card and Integrated 1394a-2000 OHCI Two-Port-PHY/Link-Layer Controller	8.00
PC14520	3.3	Yes	Yes	No	257BGA	Two Slot PC Card and Integrated 1394a-2000 OHCI Two-Port-PHY/Link-Layer Controller	9.15
PCI6420	3.3	Yes	No	No	288BGA	Integrated 2-Slot PC Card and Dedicated Flash Media Controller	9.50
PCI6620	3.3	Yes	No	No	288BGA	Integrated 2-Slot PC Card with Smartcard and Dedicated Flash Media Controller	10.50
PCI7410	3.3	Yes	Yes	No	209BGA, 208LQFP	PC Card, Flash Media, Integrated 1394a-2000 OHCI 2-Port PHY/Link-Layer Controller	11.00
PC17420	3.3	Yes	Yes	No	288BGA	Integrated 2-Slot PC Card, Dedicated Flash Media Socket and 1394a-2000	12.00
						OHCI 2Port-PHY/Link-Layer Controller	
PCI7510	3.3	Yes	Yes	No	209BGA, 208LQFP	Integrated PC Card, Smart Card and 1394 Controller	11.00
PCI7610	3.3	Yes	Yes	No	209BGA, 208LQFP	Integrated PC Card, Smart Card, Flash media ,1394a-2000 OHCI 2-Port-PHY/	12.00
						Link-Layer Controller	
PC17620	3.3	Yes	Yes	No	288BGA	Integrated 2-Slot PC Card w/Smart Card, Flash Media, 1394a-2000 OHCI	13.00
						2Port-PHY/Link-Layer Controller	

¹Suggested resale price in U.S. dollars in quantities of 1,000.

New devices are listed in **bold red**. Preview devices are listed in **bold blue**.

PCI Bridges

	Intel [®] Compatible	Speed	Expansion Interface	Hot	MicroStar BGA™	Voltage(s)	Pin/		
Device	Part Number	(MHz)	(Bits)	Swap	Packaging	(V)	Package	Description	Price ¹
HPC3130	—	33	32	_	No	3.3	128LQFP, 120QFP	Hot Plug Controller	10.95
HPC3130A	_	66	64	_	No	3.3	128LQFP, 144LQFP, 120QFP	Hot Plug Controller	10.95
PC12040	—		—	Friendly	Yes	3.3, 5	144BGA, 144LQFP	PCI-to-DSP Bridge Controller, Compliant to	
								CompactPCI Hot Swap Specification 1.0	10.55
PC12050	21150ab/ac	33	32	Friendly	Yes	3.3, 5	209BGA, 208LQFP	32-Bit, 33 MHz PCI-to-PCI Bridge, Compact PCI Hot-	
								Swap Friendly, 9-Master, MicroStar BGA Packaging	8.20
PC12050B	21150bc	66	32	Friendly	Yes	3.3, 5	257BGA, 208LQFP, 208QFP	PCI-to-PCI Bridge	9.50
PC12250	21152ab	33	32	Friendly	No	3.3, 5	176LQFP, 160QFP	32-Bit, 33 MHz PCI-to-PCI Bridge, Compact PCI	
								Hot-Swap Friendly, 4-Master	6.10

¹Suggested resale price in U.S. dollars in quantities of 1,000.

Power Management

Switching DC/DC Controllers

		Vo	V ₀	V _{REF}	Driver	Output				
	V _{IN}	(V)	(V)	Tol	Current	Current	Multiple			
Device	(V)	(max)	(min)	(%)	(A)	(A) ¹	Outputs	Protection ²	Comments	Price ³
Performance	e Processor Powe	er Supply C	ontroller	s						
TPS40000	2.25 to 5.5	4	0.7	1.5	1	15	No	OCP, UVLO	300-kHz low input sync buck, source only	0.99
TPS40050	8 to 40	30	0.7	1	1	20	No	OCP, UVLO	Wide input range sync buck, source only	1.32
TPS40060	10 to 55	40	0.7	1	1	10	No	OCP, UVLO	Wide input range sync buck, source only	1.32
High-Perform	mance Portable a	nd System	Power S	upply C	Controllers	;				
TPS5103	4.5 to 25	24	1.2	1.5	1.5	20	No	OCP, UVLO	Wide input voltage controller	1.60
TPS5120	4.5 to 28	26	0.9	1.5	1.5	15 (each)	Yes	OCP, UVLO, PG, OVP	Dual 180 degree out-of-phase operation	2.66
General-Pur	pose Power Supp	ly Controll	ers							
UC3572	4.75 to 30	0	-48	2	0.5	5	No	OCP, UVLO	PWM simple inverting	1.00
UC3573	4.75 to 30	24	1.5	2	0.5	5	No	OCP, UVLO	PWM simple buck	1.00

¹Current levels of this magnitude and beyond can be supported.

²OCP = Over-current protection; UVLO = under-voltage lockout; PG = power good; OVP = over-voltage protection.

³Suggested resale price in U.S. dollars in quantities of 1,000.

Power Management

54

Ð

DC/DC Converters (Integrated FETs)

	V _{IN}	Output Current	V _{OUT}		
Device	(V)	(A)	(V)	Package	Price ¹
Buck (Step Down)					
TPS62200/1/2/3/4/5/6	2.5 to 6.0	0.3	Adj.,1.5, 1.8, 3.3, 1.6, 2.5, 2.6	SOT 23-5	1.29
TPS62000/1/2/3/4/5/6/7/8	2.0 to 5.5	0.6	Adj., 0.9, 1.0,1.2, 1.5, 1.8, 2.5, 3.3, 1.9	MSOP-10	1.49
TPS62051/2/3/4/5	2.7 to 10	0.8	Adj., 1.5, 1.8, 3.3	MSOP-10	1.74
TPS54310/1/2/3/4/5/6	3.0 to 6.0	3	Adj., 0.9, 1.2, 1.5, 1.8, 2.5, 3.3	HTSSOP-20	3.45
TPS54610/1/2/3/4/5/6	3.0 to 6.0	6	Adj., 0.9, 1.2, 1.5, 1.8, 2.5, 3.3	HTSSOP-28	4.65
TPS54810	4.0 to 6.0	8	Adj. to 0.9	HTSSOP-28	4.90
TPS54910	3.0 to 4.0	9	Adj. to 0.9	HTSSOP-28	5.20
Inverter					
TPS6755	2.7 to 9.0	0.2	Adj. from -1.25 to -9.3	SOIC-8	1.25
TL497A	4.5 to 12	0.5	Adj. from -1.2 to -25	TSSOP-14	1.33

¹Suggested resale price in U.S. dollars in quantities of 1,000.

Supervisory Circuits

Device	Number of Supervisors	Supervised Voltages (V)	Ι _{DD} (μΑ)	Time Delay (ms)	Manual Reset	Reset Output Topology ¹	Packages	Price ²
TPS3809	1	2.5, 3.0, 3.3, 5.0	9	200	_	PP	SOT23	0.29
TPS3808	1	Adj., 0.9, 1.0, 1.2, 1.5,	3	Adj.	~	OD	SOT23/QFN	0.47
		1.6, 1.8, 2.5, 3.0, 3.3, 5.0						
TPS3823	1	2.5, 3.0, 3.3, 5.0	15	200	V	PP	SOT23	0.61
TPS3836/8	1	1.8, 2.5, 3.0, 3.3	0.25	10/200	~	PP/0D	SOT23	0.79
TPS3305	2	1.8, 2.5, 3.3, 5.0	15	200	~	PP	SO-8, MSOP-8	0.91
TPS3307	3	Adj., 1.8, 2.5, 3.3, 5.0	15	200	~	PP	SO-8, MSOP-8	0.99
TPS3510	3	3.3, 5.0, 12.0	1 mA	300	_	OD	SO-8, DIP-8	0.52

¹PP = Push-Pull; OD = Open Drain.

²Suggested resale price in U.S. dollars in quantities of 1,000.

PWM Power Supply Control (Single Output)

Device	Typical Power Level (W)	Max Practical Frequency	Start- Up Current	Oper- ating Current	Supply Voltage (V)	UVLO: On/Off (V)	V _{REF} (V)	V _{REF} Tol. (%)	Max Duty Cycle (%)	E/A	Voltage Feed- Forward	Internal Drive (Sink/Source) (A)	Package(s)	Price ¹
Peak Curren	t Mode Contro	ollers												
UCC38C40	10 to 250	1 MHz	50 µA	2.3 mA	6.6 to 20	7.0/6.6	5	2	100	Yes	Yes	1/1	SOIC-8, PDIP-8,	0.99
													MSOP-8	
UCC38C41	10 to 250	1 MHz	50 µA	2.3 mA	6.6 to 20	7.0/6.6	5	2	50	Yes	Yes	1/1	SOIC-8, PDIP-8,	0.99
													MSOP-8	
UCC38C42	10 to 250	1 MHz	50 µA	2.3 mA	9 to 20	14.5/9	5	2	100	Yes	Yes	1/1	SOIC-8, PDIP-8,	0.99
													MSOP-8	
UCC38C43	10 to 250	1 MHz	50 µA	2.3 mA	7.6 to 20	8.4/7.6	5	2	100	Yes	Yes	1/1	SOIC-8, PDIP-8,	0.99
													MSOP-8	
UCC38C44	10 to 250	1 MHz	50 µA	2.3 mA	9 to 20	14.5/9	5	2	50	Yes	Yes	1/1	SOIC-8, PDIP-8,	0.99
													MSOP-8	
UCC38C45	10 to 250	1 MHz	50 µA	2.3 mA	7.6 to 20	8.4/7.6	5	2	50	Yes	Yes	1/1	SOIC-8, PDIP-8,	0.99
													MSOP-8	

¹Suggested resale price in U.S. dollars in quantities of 1,000.

Power Management

Low Dropout Regulators (LDOs)

				Output Options				(%)			P	ackaç	es						
Device	I ₀ (mA)	V _{DO} @ I _O (mV)	lq (μA)	Voltage (V)	Adj.	Min V _{IN}	Max V _{IN}	Accuracy	SC70	S0T23	MSOP	S08	S0T223	T0220	T0263/ DDPAK	Features ¹	CO ²	Comments	Price ³
TPS797xx	10	105	1.2	1.8, 3.0, 3.3	_	1.8	5.5	4	V	_	_	—	—	—	_	PG	0.47 µF C	MSP430; lowest lq	0.32
TPS715xx	50	415	3.2	2.5, 3.0, 3.3, 5	1.2 - 15	2.5	24	4	V	—	_	—	—	—	—	_	0.47 µF C	V _{IN} up to 24 V	0.32
TPS722xx	50	50	80	1.5, 1.6, 1.8	1.2 - 2.5	1.8	5.5	3	—	V	—	—	—	—	—	/EN, BP	0.1 µF C	Low noise, V _{IN} down to 1.8 V	0.39
REG101	100	60	400	2.5, 2.8, 2.85, 3.0, 3.3, 5	2.5 - 5.5	2.6	10	1.5	—	V	_	V	—	—	_	EN, BP	_	Low noise, capacitor free	0.88
TPS792xx	100	38	185	2.5, 2.8, 3.0	1.2 - 5.5	2.7	5.5	2	—	V	—	—	—	—	—	EN	1 µF C	RF very low noise, high PSRR	0.38
TPS731xx	150	60	450	1.5, 1.8, 2.5, 3.0, 3.3, 5.0	1.2 - 5.5	1.8	5.5	2	—	V	_	—	—	—	—	EN, PG	No Cap	Reverse leakage protection	0.45
TPS771xx	150	75	90	1.5, 1.8, 2.7, 2.8, 3.3, 5	1.5 - 5.5	2.7	10	2	_	_	_	V	—	—	_	/EN, SVS	10 µF C	Low noise	0.56
TPS794xx	250	145	172	1.8, 2.5, 2.8, 3.0, 3.3	1.2 - 5.5	2.7	5.5	2	_	—	V	—	V	—	_	EN, BP	2.2 µF C	RF very low noise, high PSRR	0.62
REG102	250	150	400	2.5, 2.8, 2.85, 3.0, 3.3, 5	2.5 - 5.5	1.8	10	2	—	V	—	V	V	—	_	EN, BP	No Cap	Capacitor free, DMOS	1.00
TPS795xx	500	105	265	1.6, 1.8, 2.5, 3.0, 3.3	1.2 - 5.5	2.7	5.5	3	_	_	_	—	V	—	—	EN, BP	2.2 µF C	RF very low noise, high PSRR	0.95
REG103	500	115	500	2.5, 2.7, 3.0, 3.3, 5	2.5 - 5.5	2.1	15	2	_	_	_	V	V	—	v	EN, PG	_	Capacitor free, DMOS	2.00
TPS777xx	750	260	85	1.5, 1.8, 2.5, 3.3	1.5 - 5.5	2.7	10	2	_	_	V	—	V	—	_	/EN,SVS	10 µF T	Fast transient response	0.92
TPS725xx	1000	170	75	1.5, 1.6, 1.8, 2.5	1.2 - 5.5	1.8	6	2	_	—	_	V	V	_	V	EN, SVS	No Cap	V _{IN} down to 1.8 V, low noise	1.04
TPS786xx	1500	390	310	1.8, 2.5, 2.8, 3.0, 3.3	1.2 - 5.5	2.7	5.5	3	—	—	_	—	V	_	1	EN, BP	1 µF C	RF very low noise, high PSRR	1.28
UCCx83-x	3000	400	400	3.3, 5	1.2 - 8.5	1.8	9	2.5	_	_	_	—	_	V	V	/EN	22 µF T	Reverse leakage protection	2.57
UCx85-x	5000	350	8 mA	1.5, 2.1, 2.5	1.2 - 6	1.7	7.5	1	_	_	—	—	—	V	v	_	100 µF T	Fast LDO with reverse leak.	3.00

¹PG = PowerGood, EN = Active High Enable, /EN = Active Low Enable, SVS = Supply Voltage Supervisor, BP = Bypass Pin for noise reduction capacitor. ^{2}C = Ceramic, T = Tantalum, No Cap = Capacitor Free LDO. ³Suggested resale price in U.S. dollars in quantities of 1,000.

Dual-Output LDOs

						Output Option	15							Feat	tures						
Device	I ₀₁ (mA)	I ₀₂ (mA)	V _{D01} @ I ₀₁ (mV)	V _{DO2} @ I _{O2} (mV)	lq @ Ι _Ο (μΑ)	Voltage (V)	Adj.	Accuracy (%)	PWP Package	Min V _o	Max V ₀	/EN	PG	svs	Seq	Low Noise	Min V _{IN}	Max V _{IN}	CO1	Description	Price ²
TPS707xx	250	150	83	_	95	3.3/2.5, 3.3/1.8, 3.3/1.5, 3.3/1.2	~	2	V	1.2	5	4	~	~	~	v	2.7	5.5	10 µF T	Dual-output LDO with sequencing	1.10
TPS708xx	250	150	83	-	95	3.3/2.5, 3.3/1.8, 3.3/1.5, 3.3/1.2	~	2	1	1.2	5	4	~	~	—	v	2.7	5.5	10 µF T	Dual-output LDO with independent enable	1.10
TPS701xx	500	250	170	—	95	3.3/2.5, 3.3/1.8, 3.3/1.5, 3.3/1.2	~	2	4	1.2	5	4	~	•	~	~	2.7	5.5	10 µF T	Dual-output LDO with sequencing	1.40
TPS702xx	500	250	170	-	95	3.3/2.5, 3.3/1.8, 3.3/1.5, 3.3/1.2	~	2	1	1.2	5	4	~	~	-	~	2.7	5.5	10 µF T	Dual-output LDO with independent enable	1.40
TPS767D3xx	1000	1000	230	—	170	3.3/2.5 3.3/1.8	~	2	1	1.2	5	4	—	~	—	-	2.7	10	10 µF T	Dual-output fast LDO with integrated SVS	1.87
TPPM0110	1500	300	1000	2500	1000	3.3/1.8	—	2	_	1.8	3.3	—	—	—	_	_	4.7	5.3	100 µF T	Outputs track within 2 V	1.50
TPPM0111	1500	300	1000	2800	1000	3.3/1.5	—	2	—	1.5	3.3	—	—	—	—	—	4.7	5.3	100 µF T	Outputs track within 2 V	1.50
TPS703xx	2000	1000	160	-	185	3.3/2.5, 3.3/1.8, 3.3/1.5, 3.3/1.2	V	2	v	1.2	5	~	~	~	~	4	2.7	5.5	22 µF T	Dual-output LDO with sequencing	2.20
TPS704xx	2000	1000	160	—	185	3.3/2.5, 3.3/1.8, 3.3/1.5, 3.3/1.2	~	2	1	1.2	5	4	~	~	—	V	2.7	5.5	22 µF T	Dual-output LDO with independent enable	2.20

¹T = Tantalum.

²Suggested resale price in U.S. dollars in quantities of 1,000.

New devices are listed in **bold red**.

Digital Signal Processors

These DSP selection guides are a sampling of the industry's most complete DSP product line. See **dsp.ti.com** for complete product trees, parametric sorts and application information. A complete DSP selection guide is available at **www.ti.com/dsp**

TMS320C67x™ DSP Generation Products – Floating-Point DSPs

								Typical Activity				
	RAM (Bytes)					Cycle		Total Internal Power	Volta	ge (V)		
Device	Data/Prog	McBSP	DMA	СОМ	MHz	(ns)	MFLOPS	(W) (Full Device Speed)	Core	I/0	Packaging	Price ¹
TMS320C6712DGDP150	4K/4K/64K ²	2	16 ³	—	150	6.7	900	0.7	1.26	3.3	272 BGA, 27 mm	15.26
TMS320C6711DGDP200	4K/4K/64K ²	2	16 ³	HPI/16	200	5	1200	0.9	1.26	3.3	272 BGA, 27 mm	21.55
TMS32C6711DGDPA167 ⁴	4K/4K/64K ²	2	16 ³	HPI/16	167	6	1000	0.9	1.26	3.3	272 BGA, 27 mm	21.55
TMS32C6713BPYPA167 ⁴	4K/4K/256K ²	2 ⁵	16 ³	HPI/16	167	6	1000	1.0	1.2	3.3	208 TQFP, 28 mm	22.18
TMS32C6713BPYP200	4K/4K/256K ²	2 ⁵	16 ³	HPI/16	200	5	1200	1.0	1.2	3.3	208 TQFP, 28 mm	22.18
TMS32C6713BGDPA200 ⁴	4K/4K/256K ²	2 ⁵	16 ³	HPI/16	200	5	1200	1.2	1.26	3.3	272 BGA, 27 mm	29.14
TMS320C6713BGDP225	4K/4K/256K ²	2 ⁵	16 ³	HPI/16	225	4.4	1350	1.2	1.26	3.3	272 BGA, 27 mm	29.14
TMS320C6701GJC150	64K/64K	2	4	HPI/16	150	6.7	900	1.3	1.8	3.3	352 BGA, 35 mm	82.24
TMS320C6701GJCA120 ⁴	64K/64K	2	4	HPI/16	120	8.3	720	1.3	1.8	3.3	352 BGA, 35 mm	94.28
TMSC6701GJC16719V	64K/64K	2	4	HPI/16	167	6	1000	1.4	1.9	3.3	352 BGA, 35 mm	124.66

¹Suggested resale price in U.S. dollars in quantities of 1,000. Prices represent year 2004 suggested resale pricing.

²Format represents cache memory architecture: [data cache] / [program cache] / [unified cache].

³Enhanced DMA.

56

 \rightarrow

 $^{4}\textit{Extended}$ temperature device, –40 to 105°C case temperature operation.

⁵The C6713 DSP can be configured to have up to three serial ports in various McASP/McBSP combinations by not utilizing the HPI.

Other configurable serial options include I²C and additional GPIO.

Notes: All devices include two timers. Enhanced plastic and military DSP versions are available for selected DSPs.

TMS320C64x™ DSP Generation Products – Fixed-Point DSPs

	Internal RAM (Bytes)								(1994)2				
	L1 Program Cache/		Enhanced					Powe	r (VV)-		(11)		
D :	L1 Data Cache/		DMA	0011			MIDO	CPU	T 4 1		ge (V)		D 1 3
Device	L2 Unified RAM/Cache	McBSP	(Channels)	COM ¹	Timers	MHz	MIPS	and L1	Total	Core	I/0	Packaging	Price ³
Performance Value													
TMS320C6410GTS400	16K/16K/1M	2	64	HPI 32/16	3	400	3200	0.4	1.0	1.2	3.3	288 BGA, 23 mm	20.28
TMS320C6413GTS500	16K/16K/2M	2	64	HPI 32/16	3	500	4000	0.4	1.0	1.2	3.3	288 BGA, 23 mm	32.71
TMS320C6412GDK500 ⁴	16K/16K/256K	2	64	PCI/HPI/EMAC ⁵	3	500	4000	0.4	1.0	1.2	3.3	548 BGA, 23 mm	45.14
TMS320C6412GNZ500 ⁴	16K/16K/256K	2	64	PCI/HPI/EMAC ⁵	3	500	4000	0.4	1.0	1.2	3.3	548 BGA, 27 mm	45.14
TMS320C6412GDK600 ⁴	16K/16K/256K	2	64	PCI/HPI/EMAC ⁵	3	600	4800	0.6	1.5	1.4	3.3	548 BGA, 23 mm	50.79
TMS320C6412GNZ600 ⁴	16K/16K/256K	2	64	PCI/HPI/EMAC ⁵	3	600	4800	0.6	1.5	1.4	3.3	548 BGA, 27 mm	50.79
Video Application S	Specific												
TMS320DM640GDK400 ⁶	16K/16K/128K	1	64	EMAC	3	400	1600	0.4	1.0	1.0	3.3	548 BGA, 23 mm	22.54
TMS320DM640GNZ400 ⁶	16K/16K/128K	1	64	EMAC	3	400	1600	0.4	1.0	1.0	3.3	548 BGA, 27 mm	22.54
TMS320DM641GDK500 ⁶	16K/16K/128K	2	64	HPI 16/EMAC	3	500	4000	0.4	1.0	1.2	3.3	548 BGA, 23 mm	36.89
TMS320DM641GNZ500 ⁶	16K/16K/128K	2	64	HPI 16/EMAC	3	500	4000	0.4	1.0	1.2	3.3	548 BGA, 27 mm	36.89
TMS320DM641GDK600 ⁶	16K/16K/128K	2	64	HPI 16/EMAC	3	600	4800	0.6	1.5	1.4	3.3	548 BGA, 23 mm	42.33
TMS320DM641GNZ600 ⁶	16K/16K/128K	2	64	HPI 16/EMAC	3	600	4800	0.6	1.5	1.4	3.3	548 BGA, 27 mm	42.33
TMS320DM642GDK500 ⁴	16K/16K/256K	2 ⁷	64	PCI/HPI 32/EMAC ⁵	3	500	4000	0.4	1.0	1.2	3.3	548 BGA, 23 mm	45.14
TMS320DM642GNZ500 ⁴	16K/16K/256K	2 ⁷	64	PCI/HPI 23/EMAC ⁵	3	500	4000	0.4	1.0	1.2	3.3	548 BGA, 27 mm	45.14
TMS320DM642GDK600 ⁴	16K/16K/256K	2 ⁷	64	PCI/HPI 32/EMAC ⁵	3	600	4800	0.6	1.5	1.4	3.3	548 BGA, 23 mm	50.79
TMS320DM642GNZ600 ⁴	16K/16K/256K	27	64	PCI/HPI 32/EMAC ⁵	3	600	4800	0.6	1.5	1.4	3.3	548 BGA, 27 mm	50.79

¹HPI is selectable, 32-bit or 16-bit.

²Assumes 60% CPU utilization, 50% EMIF utilization (133 MHz for 1.4 V, 100 MHz for 1.2 V), 50% writes, 64 bits, 50% bit switching,

two 2-MHz McBSPs at 100% utilization, and two 75-MHz timers at 100% utilization. For details, see TI Application Report SPRA811C.

³Suggested resale price in U.S. dollars in quantities of 1,000. Prices represent year 2004 suggested resale pricing.

⁴Experimental units (TMX) available now. Production units (TMS) available 3004.

⁵The C6412, DM640, DM641 and DM642 can be configured to have either a 32-bit PCI or 32-bit HPI, or a 16-bit HPI with Ethernet MAC.

⁶Experimental units (TMX) available now. Production units (TMS) available 3004.

⁷The DM642 can be configured to have up to three serial ports in various video/McASP/McBSP combinations.

Note: Enhanced plastic and military DSP versions are available for selected DSPs.

New devices are listed in **bold red**.

Digital Signal Processors

TMS320C64x[™] DSP Generation Products – Fixed-Point DSPs (Continued)

ernal RAM (Bytes) I Program Cache/												1
		Enhanced					Powe	r (W) ²				
L1 Data Cache/		DMA					CPU		Volta	ge (V)		
Jnified RAM/Cache	McBSP	(Channels)	COM ¹	Timers	MHz	MIPS	and L1	Total	Core	I/0	Packaging	Price ³
16K/16K/1M	3	64	HPI 32/16	3	500	4000	0.4	1.0	1.2	3.3	532 BGA, 23 mm	82.37
16K/16K/1M	3	64	HPI 32/16	3	500	4000	0.4	1.0	1.25	3.3	532 BGA, 23 mm	98.84
16K/16K/1M	3	64	HPI 32/16	3	600	4800	0.6	1.5	1.1	3.3	532 BGA, 23 mm	98.48
16K/16K/1M	3	64	HPI 32/16	3	720	5760	0.6	1.7	1.2	3.3	532 BGA, 23 mm	128.49
16K/16K/1M	3	64	HPI 32/16	3	1000	8000	TBD	TBD	1.2	3.3	532 BGA, 23 mm	213.63
16K/16K/1M	2+Utopia ⁹	64	PCI/HPI 32/16	3	500	4000	0.4	1.0	1.2	3.3	532 BGA, 23 mm	86.70
16K/16K/1M	2+Utopia ⁹	64	PCI/HPI 32/16	3	500	4000	0.4	1.0	1.25	3.3	532 BGA, 23 mm	104.04
16K/16K/1M	2+Utopia ⁹	64	PCI/HPI 32/16	3	600	4800	0.6	1.5	1.1	3.3	532 BGA, 23 mm	104.05
16K/16K/1M	2+Utopia ⁹	64	PCI/HPI 32/16	3	720	5760	0.6	1.7	1.2	3.3	532 BGA, 23 mm	135.26
16K/16K/1M	2+Utopia ⁹	64	PCI/HPI 32/16	3	1000	8000	TBD	TBD	1.2	3.3	532 BGA, 23 mm	224.87
16K/16K/1M	2+Utopia ⁹	64	PCI/HPI 32/16	3	500	4000 ¹⁰	0.4	1.0	1.2	3.3	532 BGA, 23 mm	95.37
16K/16K/1M	2+Utopia ⁹	64	PCI/HPI 32/16	3	500	4000 ¹⁰	0.4	1.0	1.25	3.3	532 BGA, 23 mm	114.44
16K/16K/1M	2+Utopia ⁹	64	PCI/HPI 32/16	3	600	4800 ¹⁰	0.6	1.5	1.1	3.3	532 BGA, 23 mm	114.45
16K/16K/1M	2+Utopia ⁹	64	PCI/HPI 32/16	3	720	5760 ¹⁰	0.6	1.7	1.2	3.3	532 BGA, 23 mm	148.78
16K/16K/1M	2+Utopia ⁹	64	PCI/HPI 32/16	3	1000	8000 ¹⁰	TBD	TBD	1.2	3.3	532 BGA, 23 mm	247.36
	nified RAM/Cache 16K/16K/1M 16K/16K/1M 16K/16K/1M 16K/16K/1M 16K/16K/1M 16K/16K/1M 16K/16K/1M 16K/16K/1M 16K/16K/1M 16K/16K/1M 16K/16K/1M 16K/16K/1M 16K/16K/1M	Nified RAM/Cache McBSP 16K/16K/1M 3 16K/16K/1M 3 16K/16K/1M 3 16K/16K/1M 3 16K/16K/1M 3 16K/16K/1M 3 16K/16K/1M 2+Utopia ⁹	NicBSP (Channels) 0 0 16K/16K/1M 3 64 16K/16K/1M 2+Utopia ⁹ 64	Inified RAM/Cache McBSP (Channels) COM ¹ Idik/16k/1M 3 64 HPI 32/16 16k/16k/1M 2+Utopia ⁹ 64 PCI/HPI 32/16 16k/16k/1M 2+Utopia ⁹ 64 <	nified RAM/Cache McBSP (Channels) COM1 Timers 16K/16K/1M 3 64 HPI 32/16 3 16K/16K/1M 2+Utopia ⁹ 64 PCI/HPI 32/16 3 16K/16K/1M 2+Utopia ⁹ 64	nified RAM/Cache McBSP (Channels) COM1 Timers MHz Inified RAM/Cache McBSP (Channels) COM1 Timers MHz Inified RAM/Cache HCBSP (Channels) COM1 Timers MHz Inified RAM/Cache HPI 32/16 3 500 16K/16K/1M 3 64 HPI 32/16 3 600 16K/16K/1M 3 64 HPI 32/16 3 720 16K/16K/1M 3 64 HPI 32/16 3 1000 16K/16K/1M 2+Utopia ⁹ 64 PCI/HPI 32/16 3 500 16K/16K/1M 2+Utopia ⁹ 64 PCI/HPI 32/16 3 720 16K/16K/1M 2+Utopia ⁹ 64 PCI/HPI 32/16 3 720 16K/16K/1M 2+Utopia ⁹ 64 PCI/HPI 32/16 3 1000 16K/16K/1M 2+Utopia ⁹ 64 PCI/HPI 32/16 3 500 16K/16K/1M 2+Utopia ⁹ <t< td=""><td>nified RAM/Cache McBSP (Channels) COM¹ Timers MHz MIPS Inified RAM/Cache McBSP (Channels) COM¹ Timers MHz MIPS Inified RAM/Cache McBSP (Channels) COM¹ Timers MHz MIPS Inified RAM/Cache 3 64 HPI 32/16 3 500 4000 16K/16K/1M 3 64 HPI 32/16 3 600 4800 16K/16K/1M 3 64 HPI 32/16 3 720 5760 16K/16K/1M 2+Utopia⁹ 64 PCI/HPI 32/16 3 500 4000 16K/16K/1M 2+Utopia⁹ 64 PCI/HPI 32/16 3 500 4000 16K/16K/1M 2+Utopia⁹ 64 PCI/HPI 32/16 3 720 5760 16K/16K/1M 2+Utopia⁹ 64 PCI/HPI 32/16 3 1000 8000 16K/16K/1M 2+Utopia⁹ 64 PCI/HPI 32/16 3<!--</td--><td>Inified RAM/Cache McBSP (Channels) COM1 Timers MHz MIPS and L1 Inified RAM/Cache McBSP (Channels) COM1 Timers MHz MIPS and L1 Inified RAM/Cache Image: Source Source Source Source 0.4 16K/16K/1M 3 64 HPI 32/16 3 500 4000 0.4 16K/16K/1M 3 64 HPI 32/16 3 600 4800 0.6 16K/16K/1M 3 64 HPI 32/16 3 720 5760 0.6 16K/16K/1M 3 64 HPI 32/16 3 500 4000 0.4 16K/16K/1M 2+Utopia⁹ 64 PCI/HPI 32/16 3 500 4000 0.4 16K/16K/1M 2+Utopia⁹ 64 PCI/HPI 32/16 3 720 5760 0.6 16K/16K/1M 2+Utopia⁹ 64 PCI/HPI 32/16 3 1000 8000 TBD</td><td>nified RAM/Cache McBSP (Channels) COM1 Timers MHz MIPS and L1 Total 16K/16K/1M 3 64 HPI 32/16 3 500 4000 0.4 1.0 16K/16K/1M 3 64 HPI 32/16 3 500 4000 0.4 1.0 16K/16K/1M 3 64 HPI 32/16 3 600 4800 0.6 1.5 16K/16K/1M 3 64 HPI 32/16 3 720 5760 0.6 1.7 16K/16K/1M 3 64 HPI 32/16 3 1000 8000 TBD TBD 16K/16K/1M 2+Utopia⁹ 64 PCI/HPI 32/16 3 500 4000 0.4 1.0 16K/16K/1M 2+Utopia⁹ 64 PCI/HPI 32/16 3 500 4000 0.6 1.7 16K/16K/1M 2+Utopia⁹ 64 PCI/HPI 32/16 3 500 4000 0.6 1.7 16K/</td><td>nified RAM/Cache McBSP (Channels) COM¹ Timers MHz MIPS and L1 Total Core 16K/16K/1M 3 64 HPI 32/16 3 500 4000 0.4 1.0 1.2 16K/16K/1M 3 64 HPI 32/16 3 500 4000 0.4 1.0 1.25 16K/16K/1M 3 64 HPI 32/16 3 600 4800 0.6 1.5 1.1 16K/16K/1M 3 64 HPI 32/16 3 720 5760 0.6 1.7 1.2 16K/16K/1M 3 64 HPI 32/16 3 1000 8000 TBD TBD 1.2 16K/16K/1M 2+Utopia⁹ 64 PCI/HPI 32/16 3 500 4000 0.4 1.0 1.25 16K/16K/1M 2+Utopia⁹ 64 PCI/HPI 32/16 3 500 4000 0.6 1.5 1.1 16K/16K/1M 2+Utopia⁹ 64</td></td></t<> <td>nified RAM/Cache McBSP (Channels) COM¹ Timers MHz MIPS and L1 Total Core I/O 16K/16K/1M 3 64 HPI 32/16 3 500 4000 0.4 1.0 1.2 3.3 16K/16K/1M 3 64 HPI 32/16 3 500 4000 0.4 1.0 1.25 3.3 16K/16K/1M 3 64 HPI 32/16 3 600 4800 0.6 1.5 1.1 3.3 16K/16K/1M 3 64 HPI 32/16 3 720 5760 0.6 1.7 1.2 3.3 16K/16K/1M 3 64 HPI 32/16 3 1000 8000 TBD TBD 1.2 3.3 16K/16K/1M 2+Utopia⁹ 64 PCI/HPI 32/16 3 500 4000 0.4 1.0 1.25 3.3 16K/16K/1M 2+Utopia⁹ 64 PCI/HPI 32/16 3 500 4000 <</td> <td>nified RAM/Cache McBSP (Channels) COM¹ Timers MHz MIPS and L1 Total Core //0 Packaging 16K/16K/1M 3 64 HPI 32/16 3 500 4000 0.4 1.0 1.2 3.3 532 BGA, 23 mm 16K/16K/1M 3 64 HPI 32/16 3 500 4000 0.4 1.0 1.25 3.3 532 BGA, 23 mm 16K/16K/1M 3 64 HPI 32/16 3 600 4800 0.6 1.5 1.1 3.3 532 BGA, 23 mm 16K/16K/1M 3 64 HPI 32/16 3 720 5760 0.6 1.7 1.2 3.3 532 BGA, 23 mm 16K/16K/1M 3 64 HPI 32/16 3 1000 8000 TBD TBD 1.2 3.3 532 BGA, 23 mm 16K/16K/1M 2+Utopia⁹ 64 PCI/HPI 32/16 3 500 4000 0.4 1.0 1.2 3.3</td>	nified RAM/Cache McBSP (Channels) COM ¹ Timers MHz MIPS Inified RAM/Cache McBSP (Channels) COM ¹ Timers MHz MIPS Inified RAM/Cache McBSP (Channels) COM ¹ Timers MHz MIPS Inified RAM/Cache 3 64 HPI 32/16 3 500 4000 16K/16K/1M 3 64 HPI 32/16 3 600 4800 16K/16K/1M 3 64 HPI 32/16 3 720 5760 16K/16K/1M 2+Utopia ⁹ 64 PCI/HPI 32/16 3 500 4000 16K/16K/1M 2+Utopia ⁹ 64 PCI/HPI 32/16 3 500 4000 16K/16K/1M 2+Utopia ⁹ 64 PCI/HPI 32/16 3 720 5760 16K/16K/1M 2+Utopia ⁹ 64 PCI/HPI 32/16 3 1000 8000 16K/16K/1M 2+Utopia ⁹ 64 PCI/HPI 32/16 3 </td <td>Inified RAM/Cache McBSP (Channels) COM1 Timers MHz MIPS and L1 Inified RAM/Cache McBSP (Channels) COM1 Timers MHz MIPS and L1 Inified RAM/Cache Image: Source Source Source Source 0.4 16K/16K/1M 3 64 HPI 32/16 3 500 4000 0.4 16K/16K/1M 3 64 HPI 32/16 3 600 4800 0.6 16K/16K/1M 3 64 HPI 32/16 3 720 5760 0.6 16K/16K/1M 3 64 HPI 32/16 3 500 4000 0.4 16K/16K/1M 2+Utopia⁹ 64 PCI/HPI 32/16 3 500 4000 0.4 16K/16K/1M 2+Utopia⁹ 64 PCI/HPI 32/16 3 720 5760 0.6 16K/16K/1M 2+Utopia⁹ 64 PCI/HPI 32/16 3 1000 8000 TBD</td> <td>nified RAM/Cache McBSP (Channels) COM1 Timers MHz MIPS and L1 Total 16K/16K/1M 3 64 HPI 32/16 3 500 4000 0.4 1.0 16K/16K/1M 3 64 HPI 32/16 3 500 4000 0.4 1.0 16K/16K/1M 3 64 HPI 32/16 3 600 4800 0.6 1.5 16K/16K/1M 3 64 HPI 32/16 3 720 5760 0.6 1.7 16K/16K/1M 3 64 HPI 32/16 3 1000 8000 TBD TBD 16K/16K/1M 2+Utopia⁹ 64 PCI/HPI 32/16 3 500 4000 0.4 1.0 16K/16K/1M 2+Utopia⁹ 64 PCI/HPI 32/16 3 500 4000 0.6 1.7 16K/16K/1M 2+Utopia⁹ 64 PCI/HPI 32/16 3 500 4000 0.6 1.7 16K/</td> <td>nified RAM/Cache McBSP (Channels) COM¹ Timers MHz MIPS and L1 Total Core 16K/16K/1M 3 64 HPI 32/16 3 500 4000 0.4 1.0 1.2 16K/16K/1M 3 64 HPI 32/16 3 500 4000 0.4 1.0 1.25 16K/16K/1M 3 64 HPI 32/16 3 600 4800 0.6 1.5 1.1 16K/16K/1M 3 64 HPI 32/16 3 720 5760 0.6 1.7 1.2 16K/16K/1M 3 64 HPI 32/16 3 1000 8000 TBD TBD 1.2 16K/16K/1M 2+Utopia⁹ 64 PCI/HPI 32/16 3 500 4000 0.4 1.0 1.25 16K/16K/1M 2+Utopia⁹ 64 PCI/HPI 32/16 3 500 4000 0.6 1.5 1.1 16K/16K/1M 2+Utopia⁹ 64</td>	Inified RAM/Cache McBSP (Channels) COM1 Timers MHz MIPS and L1 Inified RAM/Cache McBSP (Channels) COM1 Timers MHz MIPS and L1 Inified RAM/Cache Image: Source Source Source Source 0.4 16K/16K/1M 3 64 HPI 32/16 3 500 4000 0.4 16K/16K/1M 3 64 HPI 32/16 3 600 4800 0.6 16K/16K/1M 3 64 HPI 32/16 3 720 5760 0.6 16K/16K/1M 3 64 HPI 32/16 3 500 4000 0.4 16K/16K/1M 2+Utopia ⁹ 64 PCI/HPI 32/16 3 500 4000 0.4 16K/16K/1M 2+Utopia ⁹ 64 PCI/HPI 32/16 3 720 5760 0.6 16K/16K/1M 2+Utopia ⁹ 64 PCI/HPI 32/16 3 1000 8000 TBD	nified RAM/Cache McBSP (Channels) COM1 Timers MHz MIPS and L1 Total 16K/16K/1M 3 64 HPI 32/16 3 500 4000 0.4 1.0 16K/16K/1M 3 64 HPI 32/16 3 500 4000 0.4 1.0 16K/16K/1M 3 64 HPI 32/16 3 600 4800 0.6 1.5 16K/16K/1M 3 64 HPI 32/16 3 720 5760 0.6 1.7 16K/16K/1M 3 64 HPI 32/16 3 1000 8000 TBD TBD 16K/16K/1M 2+Utopia ⁹ 64 PCI/HPI 32/16 3 500 4000 0.4 1.0 16K/16K/1M 2+Utopia ⁹ 64 PCI/HPI 32/16 3 500 4000 0.6 1.7 16K/16K/1M 2+Utopia ⁹ 64 PCI/HPI 32/16 3 500 4000 0.6 1.7 16K/	nified RAM/Cache McBSP (Channels) COM ¹ Timers MHz MIPS and L1 Total Core 16K/16K/1M 3 64 HPI 32/16 3 500 4000 0.4 1.0 1.2 16K/16K/1M 3 64 HPI 32/16 3 500 4000 0.4 1.0 1.25 16K/16K/1M 3 64 HPI 32/16 3 600 4800 0.6 1.5 1.1 16K/16K/1M 3 64 HPI 32/16 3 720 5760 0.6 1.7 1.2 16K/16K/1M 3 64 HPI 32/16 3 1000 8000 TBD TBD 1.2 16K/16K/1M 2+Utopia ⁹ 64 PCI/HPI 32/16 3 500 4000 0.4 1.0 1.25 16K/16K/1M 2+Utopia ⁹ 64 PCI/HPI 32/16 3 500 4000 0.6 1.5 1.1 16K/16K/1M 2+Utopia ⁹ 64	nified RAM/Cache McBSP (Channels) COM ¹ Timers MHz MIPS and L1 Total Core I/O 16K/16K/1M 3 64 HPI 32/16 3 500 4000 0.4 1.0 1.2 3.3 16K/16K/1M 3 64 HPI 32/16 3 500 4000 0.4 1.0 1.25 3.3 16K/16K/1M 3 64 HPI 32/16 3 600 4800 0.6 1.5 1.1 3.3 16K/16K/1M 3 64 HPI 32/16 3 720 5760 0.6 1.7 1.2 3.3 16K/16K/1M 3 64 HPI 32/16 3 1000 8000 TBD TBD 1.2 3.3 16K/16K/1M 2+Utopia ⁹ 64 PCI/HPI 32/16 3 500 4000 0.4 1.0 1.25 3.3 16K/16K/1M 2+Utopia ⁹ 64 PCI/HPI 32/16 3 500 4000 <	nified RAM/Cache McBSP (Channels) COM ¹ Timers MHz MIPS and L1 Total Core //0 Packaging 16K/16K/1M 3 64 HPI 32/16 3 500 4000 0.4 1.0 1.2 3.3 532 BGA, 23 mm 16K/16K/1M 3 64 HPI 32/16 3 500 4000 0.4 1.0 1.25 3.3 532 BGA, 23 mm 16K/16K/1M 3 64 HPI 32/16 3 600 4800 0.6 1.5 1.1 3.3 532 BGA, 23 mm 16K/16K/1M 3 64 HPI 32/16 3 720 5760 0.6 1.7 1.2 3.3 532 BGA, 23 mm 16K/16K/1M 3 64 HPI 32/16 3 1000 8000 TBD TBD 1.2 3.3 532 BGA, 23 mm 16K/16K/1M 2+Utopia ⁹ 64 PCI/HPI 32/16 3 500 4000 0.4 1.0 1.2 3.3

¹HPI is selectable, 32-bit or 16-bit.

²Assumes 60% CPU utilization, 50% EMIF utilization (133 MHz for 1.4 V, 100 MHz for 1.2 V), 50% writes, 64 bits, 50% bit switching,

two 2-MHz McBSPs at 100% utilization, and two 75-MHz timers at 100% utilization. For details, see TI Application Report SPRA811C.

³Suggested resale price in U.S. dollars in quantities of 1,000. Prices represent year 2004 suggested resale pricing.

⁸Extended temperature device, -40 to 105°C case temperature operation.

⁹UTOPIA pins muxed with a third McBSP.

¹⁰Plus on-chip Turbo (TCP) and Viterbi (VCP) coprocessors.

Note: Enhanced plastic and military DSP versions are available for selected DSPs.

TMS320C55x™ DSP Generation Products

				DAT/PRO															
	RAM	ROM		(ADDR)							MMC/	Volta	ge (V)			Cycles			
Device	(Bytes)	(Bytes)	Security	(Words)	USB	ADC	UART	l ² C	RTC	McBSP ¹	SD	Core	I/0	СОМ	Timers ²	(ns)	MIPS	Packaging	Price ³
TMS320VC5501GZZ3 ⁴	32K	32K	—	8M	—	—	1	V	—	2	—	1.26	3.3	HPI16/8	3 ⁵	3.3	600	201 BGA ⁶	5.37
TMX320VC5501PGF3 ⁴	32K	32K	_	8M	_	—	1	V	—	2	_	1.26	3.3	HPI16/8	3 ⁵	3.3	600	176 LQFP	6.44
TMS320VC5502GZZ2 ⁴	64K	32K	_	8M	_	—	V	V	—	3	_	1.26	3.3	HPI16/8	3 ⁵	5	400	201 BGA ⁶	7.91
TMX320VC5502PGF2 ⁴	64K	32K	_	8M	_	—	1	V	—	3	_	1.26	3.3	HPI16/8	3 ⁵	5	400	176 LQFP	9.49
TMS320VC5502GGW3 ⁴	64K	32K	_	8M	_	—	1	V	—	3	_	1.26	3.3	HPI16/8	3 ⁵	3.3	600	176 BGA ⁶	10.17
TMX320VC5502PGF3 ⁴	64K	32K	_	8M	_	—	1	V	—	3	_	1.26	3.3	HPI16/8	3 ⁵	3.3	600	176 LQFP	12.20
TMS320VC5509GHH31	256K	64K	✓7	8M	V	V	_	V	V	3	V	1.6	3.3	HPI16	2 ⁵	6.9	288	179 BGA ⁶	18.65
TMS320VC5509PGE31	256K	64K	✓7	8M	V	V	_	V	V	3	V	1.6	3.3	HPI16	2 ⁵	6.9	288	144 LQFP	18.65
TMS320VC5509AGHH2 ⁸	256K	64K	✓7	8M	V	V	_	V	V	3	V	1.6	3.3	HPI16	2 ⁵	5	400	179 BGA ⁶	18.19
TMX320VC5509APGE28	256K	64K	✓7	8M	V	V	_	V	V	3	V	1.6	3.3	HPI16	2 ⁵	5	400	144 LQFP	21.83
TMS320VC5510AGGWA1 ⁴	320K	32K	_	8M	_	—	_	_	—	3	_	1.6	3.3	HPI16	2	6.25	320	240 BGA ⁶	21.90
TMS320VC5510AGGWA24	320K	32K	_	8M	—	_	—	_	_	3	_	1.6	3.3	HPI16	2	5	400	240 BGA ⁶	25.70
TMS320VC5510AGGW1	320K	32K	_	8M	_	_	_	—	_	3	_	1.6	3.3	HPI16	2	6.25	320	240 BGA ⁶	18.25
TMS320VC5510AGGW2	320K	32K	_	8M	_	_	_	_	_	3	_	1.6	3.3	HPI16	2	5	400	240 BGA ⁶	21.47

¹Multichannel buffered serial port (McBSP).

²3 = Two general-purpose timers and one 32-bit DSP/BIOS™ kernel counter; 2 = Two general-purpose timers.

³Suggested resale price in U.S. dollars in quantities of 1,000. Prices represent year 2004 suggested resale pricing.

⁴Extended temperature device, -40 to 85°C case temperature operation.

⁵Plus one additional programmable watchdog timer.

⁶MicroStar BGA™ package.

⁷8-Kword secure ROM and JTAG disconnect option.

⁸Initial experimental (TMX) devices available now. Qualified (TMS) units available in 2Q04.

Notes: All devices include 6-channel DMA and software PLL. Enhanced plastic and military DSP versions are available for selected DSPs.

←

Digital Signal Processors \rightarrow

58

TMS320C28x[™] DSP Generation Products

		Boot	RAM ²	Flash ²				#	A/D ³ Chs/								Core		
		ROM ²	(16-bit	(16-bit		Comp/	CAP/	PWM	Conversion		WD					I/0	Voltage		
Device ¹	MIPS	(words)	words)	words)	Timers	PWM	QEP	Channels	Time (ns) ⁴	EMIF	Timer	McBSP	SPI	SCI	CAN	Pins	(V)	Packaging	Price ⁵
TMS320F2810-PBKA/S ⁴	150	4K	18K	64K	7	16	9/6	16	16 ch/80	_	v	v	~	V	V	56	1.9	128 LQFP	14.53
TMS320F2811-PBKA/S ⁴	150	4K	18K	128K	7	16	9/6	16	16 ch/80	_	1	V	V	V	V	56	1.9	128 LQFP	15.50
TMS320F2812-GHHA/S ⁴	150	4K	18K	128K	7	16	9/6	16	16 ch/80	~	~	~	V	V	V	56	1.9	179 BGA ⁶	16.47
TMS320F2812-PGFA/S ⁴	150	4K	18K	128K	7	16	9/6	16	16 ch/80	1	~	V	V	V	V	56	1.9	176 LQFP	16.47
$^{1}A = -40^{\circ} \text{ to } 85^{\circ}C; S = -40^{\circ}$) to 125°	°C (10% p	orice add	ler).												Ne	v devices	are listed in	bold red.

 $^{2}1$ word = 2 bytes.

³Dual sample/hold.

⁴12-bit.

⁵Suggested resale price in U.S. dollars in quantities of 1,000. Prices represent year 2004 suggested resale pricing.

⁶MicroStar BGA™ package.

Note: Enhanced plastic and military DSP versions are available for selected DSPs.

TMS320C24x[™] DSP Generation Products

Device vords vords <t< th=""><th></th><th>RAM¹</th><th>ROM¹</th><th>Flash¹</th><th>Boot¹</th><th></th><th>General-</th><th>M/ / 1 1</th><th>DIA/84</th><th></th><th></th><th></th><th>A/D Channels²</th><th>1/0</th><th>N L</th><th></th><th></th><th></th></t<>		RAM ¹	ROM ¹	Flash ¹	Boot ¹		General-	M/ / 1 1	DIA/84				A/D Channels ²	1/0	N L			
TMS320LC2401AVFA ⁴⁵ IK 8K 2 V 7 V 5 ch 13 3.3 40 32 LGFP 1.99' TMS320LC2402APGA ⁴⁵ 544 6K - 8 V 8 ch 21 3.3 40 64 PGFP 2.55' TMS320LC2402APZA ⁴⁵ 15K 16K 16 V V 16 ch 41 3.3 40 100 LGFP 4.80' ⁴ TMS320LC2406APZA ⁴⁵ 25K 32K - 4 V 16 V V 16 ch 41 3.3 40 100 LGFP 4.80' ⁴ TMS320L2406APZA ⁴⁵ 1K 8K 256 - 2 V 7 5 ch 13 3.3 40 21 LGFP 3.49' TMS320L240APAGA ⁵ 1K 8K 256 - 2 V 8 - V - 8 ch 21 3.3 40 2	Davias	(16-bit	(16-bit	(16-bit	ROM	EMIE	Purpose	Watchdog Timor	PWM	CDI	901	CAN	Conversion	l/O Dino	Voltage	MIDC	Dookoging	Drico ³
TMS320L2402APGA ⁴⁵ 5K 6K -				worus/	(worus)												J	
TMS320LC2402APGA ⁴⁵ 544 6K 2 ·· 8 ·· 8 ch 21 3.3 40 64 PGFP 2.95 ⁴ TMS320LC2404APZA ⁴⁵ 1.5K 16K 4 ·· 16 ·· ·· 16 4 ·· 16 ·· ·· 16 41 3.3 40 100 LGFP 4.90 ⁴ TMS320LC2406APZA ⁴⁵ 2.5K 32K 4 ·· 16 ·· ·· 16 41 3.3 40 100 LGFP 4.90 ⁴ TMS320LC2402APAGA ⁵ 1K 8K 256 2 ·· 77 ·· 8.ch 21 3.3 40 64 PGFP 3.81 TMS320LF2402APAGA ⁵ 1K 8K 256 2 ·· 8 ·· ·· 8.ch 21 3.3 40 64 PGFP 3.81 TMS320LF2407APGA ⁵ 1K 16K 256 2 ·· 8		in	UN				-	•	,		•			10	0.0	10		1.00
TMS320LC2404APZ4 ⁴⁵ 1.5K 16K 4 ·· 16 ·· ·· 16 ·· ·· 16 ·· ·· 16 ·· ·· 16 ·· ·· 16 ·· ·· 16 ·· ·· 16 ·· ·· ·· 16 ·· ·· ·· 16 ·· ·· ·· 16 ·· ·· ·· 16 ·· ·· ·· 16 ·· ·· ·· 16 ·· ·· ·· 16 ·· ·· ·· 16 ·· <	TMS320LC2402APGA ^{4,5}	544	6K	_	_	_	2	V	8	_	V	_		21	3.3	40	64 PQFP	2.95 ⁴
Image: bold of the state of the st													0.425					
TMS320LC2406APZA ⁴⁵ 2.5K 32K 4 ✓ 16 ✓ ✓ 16 b b 0375 41 3.3 40 100 L0FP 5.47 ⁴ TMS320LF2401AVFA ⁵ 1K 8K 256 2 ✓ 7 ✓ 5ch 13 3.3 40 32 L0FP 3.49 TMS320LF2402APAGA ⁵ 1K 8K 256 2 ✓ 8 ✓ 8ch 0.5 13 3.3 40 64 P0FP 7.88 TMS320LF2403APAGA ⁵ 1K 16K 256 2 ✓ 8 ✓ ✓ 8ch 0.5 21 3.3 40 64 P0FP 7.88 TMS320LF2403APAGA ⁵ 1K 16K 25 - 4 ✓ 16 ✓ ✓ ✓ 8ch 0.5 11 3.3 40 100 L0FP 8.86 TMS320LF2407APGEA ⁵ 2.5K 32K 256 ✓ 4 ✓ 16	TMS320LC2404APZA ^{4,5}	1.5K	16K	_	_	—	4	v	16	V	V	_	16 ch	41	3.3	40	100 LQFP	4.90 ⁴
Image: Probability of the state of													0.375					
TMS320LF2401AVFA ⁵ 1K 8K 256 2 V 7 V 5 ch 0.5 13 3.3 40 32 L0FP 3.49 TMS320LF2402APAGA ⁵ 1K 8K 256 2 V 8 V 8 ch 0.5 21 3.3 40 64 P0FP 7.88 TMS320LF2403APAGA ⁵ 1K 16K 256 2 V 8 V V 8 ch 0.5 21 3.3 40 64 L0FP 8.38 TMS320LF2406APZA ⁵ 2.5K 32K 256 4 V 16 V V 16 ch 0.5 41 3.3 40 100 L0FP 8.86 TMS320LF2407APGEA ⁵ 2.5K 32K 256 V 4 V 16 V V 16 ch 0.5 13 3.3 40 104 L0FP 9.39 TMS320LF240APGEA ⁵ 544 3K - V K V V 8 ch <br< td=""><td>TMS320LC2406APZA^{4,5}</td><td>2.5K</td><td>32K</td><td>—</td><td>—</td><td>—</td><td>4</td><td>v</td><td>16</td><td>V</td><td>V</td><td>1</td><td>16 ch</td><td>41</td><td>3.3</td><td>40</td><td>100 LQFP</td><td>5.47⁴</td></br<>	TMS320LC2406APZA ^{4,5}	2.5K	32K	—	—	—	4	v	16	V	V	1	16 ch	41	3.3	40	100 LQFP	5.47 ⁴
Image: Problem in the state of the																		
TMS320LF2402APAGA ⁵ 1K 8K 256 2 V 8 V 8 ch 0.5 21 3.3 40 64 PGFP 7.88 TMS320LF2403APAGA ⁵ 1K 16K 256 2 V 8 V V 8 ch 0.5 21 3.3 40 64 LOFP 8.73 TMS320LF2406APZA ⁵ 2.5K 32K 256 - 4 V 16 V V 16 ch 0.5 41 3.3 40 64 LOFP 8.86 TMS320LF2407APGEA ⁵ 2.5K 32K 256 V 4 V 16 V V 16 ch 0.5 41 3.3 40 144 LOFP 8.86 TMS320F2407APGEA ⁵ 2.5K 32K 256 V 4 V V 8 V V 16 ch 0.5 10 3.3 40 144 LOFP 3.99 10 TMS320F240FA6A ⁵ 544 8K 8 V V 8 ch <br< td=""><td>TMS320LF2401AVFA⁵</td><td>1K</td><td>-</td><td>8K</td><td>256</td><td>—</td><td>2</td><td>v</td><td>7</td><td>—</td><td>~</td><td>—</td><td></td><td>13</td><td>3.3</td><td>40</td><td>32 LQFP</td><td>3.49</td></br<>	TMS320LF2401AVFA ⁵	1K	-	8K	256	—	2	v	7	—	~	—		13	3.3	40	32 LQFP	3.49
Image: Constraint of the state of the s																		
TMS320LF2403APAGA ⁵ 1K 16K 256 2 V 8 V V S S 2 3.3 40 64 L0FP 8.73 TMS320LF2406APZA ⁵ 2.5K 32K 256 4 V 16 V V N 16 41 3.3 40 100 L0FP 8.86 TMS320LF2407APGEA ⁵ 2.5K 32K 256 V 4 V 16 V V N 16 41 3.3 40 144 L0FP 9.39 TMS320LF2407APGEA ⁵ 544 32K 256 V 4 V 16 V V N 16 13.9 16 13.9 16 13.9 16 13.9 16 14 15.5 14 3.3 40 144 L0FP 3.39 14 13.9 13.9 13.9 13.9 13.9 13.9 13.9 13.9 13.9 14 14.9 13.9 13.9 14 13.9 13.9 13.9 14 14.9 </td <td>TMS320LF2402APAGA⁵</td> <td>1K</td> <td>-</td> <td>8K</td> <td>256</td> <td>—</td> <td>2</td> <td>V</td> <td>8</td> <td>—</td> <td>~</td> <td>—</td> <td></td> <td>21</td> <td>3.3</td> <td>40</td> <td>64 PQFP</td> <td>7.88</td>	TMS320LF2402APAGA ⁵	1K	-	8K	256	—	2	V	8	—	~	—		21	3.3	40	64 PQFP	7.88
Image: problem state in the state intermed and the state intermediate intermedia																		
TMS320LF2406APZA ⁵ 2.5K 32K 256 4 ·· 16 ·· ·· 16 ch 41 3.3 40 100 L0FP 8.86 TMS320LF2407APGEA ⁵ 2.5K 32K 256 ·· 4 ·· 16 ·· ·· 16 ch 41 3.3 40 100 L0FP 8.86 TMS320LF2407APGEA ⁵ 2.5K 32K 256 ·· 4 ·· 16 ·· ·· 16 ch 41 3.3 40 144 L0FP 9.39 TMS320F243PGEA ⁵ 544 8K ·· 8 ·· 8 ·· 8 ·· 9.9 0.5 0.5 20 144 L0FP 13.99 TMS320F242PGA ^{5,6} 544 4K ·· 2 ·· 8 ·· 8 8 ·· 9.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	TMS320LF2403APAGA ³	1K	-	16K	256		2	~	8	~	~	~		21	3.3	40	64 LQFP	8.73
Image: state in the state		0.51/		001/	050		4	,	10	,		,		41	0.0	40		0.00
TMS320LF2407APGEA ⁵ 2.5K 32K 256 · 4 · 16 · · · 16 ch 0.5 41 3.3 40 144 L0FP 9.39 TMS320F243PGEA ⁵ 544 8K · 2 · 8 · · 8 ch 0.5 32 5 20 144 L0FP 13.99 TMS320F243PGEA ⁵ 544 8K · · · 8 · · 8 ch 0.5 32 5 20 144 L0FP 13.99 TMS320C242PGA ^{5.6} 544 4K 2 · 8 · 8 ch 0.9 26 5 20 64 P0FP 3.69 ⁴ TMS320C242FNA ^{5.6} 544 4K 2 · 8 · 8 ch 0.9 26 5 20 64 P0FP 3.69 ⁴ TMS320F241PGA ⁵ 544 8K 2 · 8 · · · 8 ch 0.99 26 5 <td>TIVI5320LF2406APZA°</td> <td>Z.5K</td> <td>_</td> <td>32K</td> <td>256</td> <td></td> <td>4</td> <td>V</td> <td>10</td> <td>V</td> <td>V</td> <td>V</td> <td></td> <td>41</td> <td>3.3</td> <td>40</td> <td>100 LUFP</td> <td>8.80</td>	TIVI5320LF2406APZA°	Z.5K	_	32K	256		4	V	10	V	V	V		41	3.3	40	100 LUFP	8.80
Image: state in the state		251		20K	256	./	4	./	16	./				/1	2.2	40	1// LOEP	0.20
TMS320F243PGEA ⁵ 544 8K Image: Ima		2.51		JZK	230		7	•	10			•		11	0.0	70		0.00
Image: state in the	TMS320F243PGFA ⁵	544	_	8K	_	~	2	V	8	~	V	~		32	5	20	144 I OFP	13,99
TMS320C242PGA ^{5,6} 544 4K 2 \checkmark 8 \checkmark 8 ch 0.9 26 5 20 64 P0FP 3.69 ⁴ TMS320C242FNA ^{5,6} 544 4K 2 \checkmark 8 \checkmark 8 ch 0.9 26 5 20 64 P0FP 3.69 ⁴ TMS320C242FNA ^{5,6} 544 4K 2 \checkmark 8 \checkmark 8 ch 0.9 26 5 20 64 P0FP 3.69 ⁴ TMS320F241PGA ⁵ 544 8K 2 \checkmark 8 \checkmark \checkmark 8 ch 0.9 26 5 20 64 P0FP 12.37 TMS320F241FNA ⁵ 544 8K 2 \checkmark 8 \checkmark \checkmark 8 ch 0.9 26 5 20 64 P0FP 12.37 TMS320F241FNA ⁵ 544 8K 2 \checkmark 8 \checkmark \checkmark 8 ch 0.9 26 5 20 38 PLCC		•		U.V.		·	-	·	Ŭ	•	·	•		-	Ŭ			10100
TMS320C242FNA ^{5,6} 544 4K 2 Image: Married Marr	TMS320C242PGA ^{5,6}	544	4K	_	_	_	2	V	8	_	V	_		26	5	20	64 PQFP	3.69 ⁴
Image: Marking and Mark													0.9					
TMS320F241PGA ⁵ 544 8K 2 Image: Marcine Marci	TMS320C242FNA ^{5,6}	544	4K	—	_	_	2	v	8	—	V	—	8 ch	26	5	20	38 PLCC	3.69 ⁴
TMS320F241FNA ⁵ 544 8K -2 Image: Marcine Constraints of the constraints of													0.9					
TMS320F241FNA ⁵ 544 - 8K - - 2 Image: Second se	TMS320F241PGA ⁵	544	—	8K	—	—	2	 ✓ 	8	V	V	~	8 ch	26	5	20	64 PQFP	12.37
Image: Mark S20F240PQA ⁵ 544 - 16K - Image: Mark S20F240PQA ⁵ Image: Mark S20F																		
TMS320F240PQA ⁵ 544 - 16K - 1 3 3 1 12 1 - 16ch 28 5 20 132 PQFP 16.21	TMS320F241FNA ⁵	544	—	8K	-	—	2	v	8	V	V	~		26	5	20	38 PLCC	13.36
	TMS320F240PQA ⁵	544	-	16K	-	~	3	~	12	V	V	—	16 ch 6.1	28	5	20	132 PQFP	16.21

¹1 word = 2 bytes.

²10-bit.

³Suggested resale price in U.S. dollars in quantities of 1,000. Prices represent year 2004 suggested resale pricing.

⁴Minimum volume for LC240xA devices is 10,000 units with NRE of \$9,000.

 5 Available in industrial temperature range (A = -40 to 85°C) or automotive temperature range (S = -40 to 125°C) (with 10% price adder).

⁶Pricing based on 5,000 units minimum requirements due to factory ROM code.

Standard lead times are 5 weeks for Flash parts and 10 weeks for ROM-coded parts.

Note: Enhanced plastic and military DSP versions are available for selected DSPs.

59

A

Below you'll find a sampling of the design tools TI offers to simplify your design process. To access any of the following application reports, type the URL www-s.ti.com/sc/techlit/litnumber and replace litnumber with the number in the Lit Number column.

For a complete list of analog application reports, visit: analog.ti.com/appnotes

For a complete list of DSP application reports, visit: www.dspvillage.ti.com/tools

Title	Lit Number
Amplifiers	
Single-Supply Operation of Isolation Amplifiers	SB0A004
Very Low Cost Analog Isolation with Power	SBOA013
Boost Instrument Amp CMR with Common-Mode Driven Supplies	SBOA014
DC Motor Speed Controller: Control a DC Motor without	SB0A043
Tachometer Feedback	
PWM Power Driver Modulation Schemes	SLOA092
Thermo-Electric Cooler Control Using a TMS320F2812 DSP and a DRV592 Power Amplifier	SPRA873
Isolation Amps Hike Accuracy and Reliability	SB0A064
Make a –10V to +10V Adjustable Precision Voltage Source	SB0A052
±200V Difference Amplifier with Common-Mode Voltage Monitor	SB0A005
AC Coupling Instrumentation and Difference Amplifiers	SB0A003
Extending the Common-Mode Range of Difference Amplifiers	SB0A008
Level Shifting Signals with Differential Amplifiers	SB0A038
Photodiode Monitoring with Op Amps	SB0A035
Single-Supply Operation of Isolation Amplifiers	SB0A004
Precision IA Swings Rail-to-Rail on Single 5V Supply	SB0A033
Pressure Transducer to ADC Application	SLOA056
Buffer Op Amp to ADC Circuit Collection	SLOA098
Amplifiers and Bits: An Introduction to Selecting Amplifiers for Data Converters	SLOA035B
Diode-Connected FET Protects Op Amps	SB0A058
Signal Conditioning Piezoelectric Sensors	SLOA033A
Diode-Based Temperature Measurement	SB0A019
Single-Supply, Low-Power Measurements of Bridge Networks	SBOA018
Thermistor Temperature Transducer to ADC Application	SL0A052
Signal Conditioning Wheatstone Resistive Bridge Sensors	SLOA034
Low-Power Signal Conditioning For a Pressure Sensor	SLAA034
Interfacing the MSP430 and TMP100 Temperature Sensor	SLAA151
Data Converters	
Interfacing the ADS8361 to the TMS320F2812 DSP	SLAA167
Interfacing the TLC2552 and TLV2542 to the MSP430F149	SLAA168
MSC1210 In-Application Flash Programming	SBAA087
Pressure Transducer to ADC Application	SLOA056
Measuring Temperature with the ADS1216, ADS1217, or ADS1218	SBAA073
SPI-Based Data Acquisition/Monitor Using the TLC2551 Serial ADC	SLAA108A
Implementing a Direct Thermocouple Interface with MSP430x4xx and ADS1240	SLAA125A
Using the ADS7846 Touch Screen Controller with the Intel SA-1110 StrongArm Processor	SBAA070
Complete Temp Data Acquisition System from a Single +5V Supply	SBAA050
Interfacing the ADS1210 with an 8xC51 Microcontroller	SBAA010
Programming Tricks for Higher Conversion Speeds Utilizing	SBAA005
Delta Sigma Converters	
Retrieving Data from the DDC112	SBAA026
Selecting an ADC	SBAA004
Synchronization of External Analog Multiplexers with the $\Delta\Sigma$ ADCs	SBAA013

Title	Lit Number
Data Converters (Continued)	
The DDC112's Test Mode	SBAA025
Understanding the DDC112's Continuous and	SBAA024
Non-Continuous Modes	
Thermistor Temperature Transducer to ADC Application	SL0A052
Low-Power Signal Conditioning for a Pressure Sensor	SLAA034
Signal Acquisition and Conditioning with Low Supply Voltages	SLAA018
An Optical Amplifier Pump Laser Reference Design	SBAA072
Based on the AMC7820	ODAAOIZ
Processors	_
Microcontrollers	
Programming a Flash-Based MSP430 Using the JTAG Interface	SLAA149
Mixing C and Assembler With the MSP430	SLAA145
	SLAA140 SLAA139
Implementing an Ultra-Low-Power Keypad Interface With the MSP430	SLAATSS
Interface	_
CAN	_
	011 4 100
A System Evaluation of CAN Transceivers	SLLA109
Introduction to the Controller Area Network	SLOA101
Using CAN Arbitration for Electrical Layer Testing	SLLA123
RS-485	
Interface Circuits for TIA/EIA-485 (RS-485)	SLLA036B
422 and 485 Standards Overview and System Configurations	SLLA070C
RS-485 for E-Meter Applications	SLLA112
TIA/EIA-485 and M-LVDS, Power and Speed Comparison 1394	SLLA106
VIDs, PIDs and Firmware: Design Decisions When Using	SLLA154
TI USB Device Controllers	JLLAIJ4
Comparing Bus Solutions	SLLA067
Galvanic Isolation of the IEEE 1394-1995 Serial Bus	SLLA007
IEEE 1394 EMI Board Design and Layout Guidelines	SLLAUTT SLLA117
č	SLLATT/
Performance Analysis of an IEEE 1394 Network	
Recommendations for Phy Layout	SLLA020A
Selection and Specification of Crystals for TI's IEEE 1394 Physical Layers	SLLA051
TI IEEE 1394A Cable Transceiver/Arbiter FAQ	SLLA087
TSB12LV32 (GP2Lynx)/TSB41LV03 Reference Schematic	SLLA044
CardBus	01211011
PCI1520 Implementation Guide	SCPA033
Power Controllers	001 A000
DC Brush Motor Control using the TPIC2101	SLIT110
Power Management	361110
Technical Review of Low Dropout Voltage Regulator Operation	SLVA072
and Performance	SLVA072
ESR, Stability, and the LDO Regulator	SLVA115
Extending the Input Voltage Range of an LDO Regulator	SLVA119
High Current LDO Linear Regulators (UCCx81-ADJ, UCCx82-ADJ, UCCx83-ADJ, UCCx85-ADJ)	SLUA256
PowerPAD Thermally Enhanced Package	SLMA002
,	

TI Worldwide Technical Support

Internet

TI Semiconductor Product Information Center Home Page support.ti.com

TI Semiconductor KnowledgeBase Home Page support.ti.com/sc/knowledgebase

Product Information Centers

Americas	
Phone	+1(972) 644-5580
Fax	+1(972)927-6377
Internet	support.ti.com/sc/pic/americas.htm

Europe, Middle East, and Africa

Phone		
Belgium (Engl	lish)	+32 (0) 27 45 55 32
Finland (Engli	sh)	+358 (0) 9 25173948
France		+33 (0) 1 30 70 11 64
Germany		+49 (0) 8161 80 33 11
Israel (English	ו)	1800 949 0107
Italy		800 79 11 37
Netherlands (English)	+31 (0) 546 87 95 45
Spain		+34 902 35 40 28
Sweden (Engl	lish)	+46 (0) 8587 555 22
United Kingdo	om	+44 (0) 1604 66 33 99
Fax	+49 (0) 8	161 80 2045
Internet	support.t	i.com/sc/pic/euro.htm

Ja Fa

Japan Fax Internation Domestic Internet Internation Domestic	al suppo	-3344-5317 31-0036 rt.ti.com/sc/pic/japan.htm tij.co.jp/pic
Ch Ho Inc Ko Ma Ne Ph Sir Tai	stralia ina ng Kong lonesia rea alaysia ww Zealand ilippines ngapore wan ailand 886-2-237 tiasia@ti.	+886-2-23786800 <u>Toll Free Number</u> 1-800-999-084 800-820-8682 800-96-5941 001-803-8861-1006 080-551-2804 1-800-80-3973 0800-446-934 1-800-765-7404 800-886-1028 0800-006800 001-800-886-0010 78-6808 com or ti-china@ti.com .com/sc/pic/asia.htm

Important Notice: The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to TI's standard terms and conditions of sale. Customers are advised to obtain the most current and complete information about TI products and services before placing orders. TI assumes no liability for applications assistance, customer's applications or product designs, software performance, or infringement of patents. The publication of information regarding any other company's products or services does not constitute TI's approval, warranty or endorsement thereof

D111103

Safe Harbor Statement

This publication may contain forward-looking statements that involve a number of risks and uncertainties. These "forward-looking statements" are intended to qualify for the safe harbor from liability established by the Private Securities Litigation Reform Act of 1995. These forward-looking statements generally can be identified by phrases such as TI or its management "believes," "expects," "anticipates," "foresees," "forecasts," "estimates" or other words or phrases of similar import. Similarly, such statements herein that describe the company's products, business strategy, outlook, objectives, plans, intentions or goals also are forward-looking statements. All such forward-looking statements are subject to certain risks and uncertainties that could cause actual results to differ materially from those in forward-looking statements. Please refer to TI's most recent Form 10-K for more information on the risks and uncertainties that could materially affect future results of operations. We disclaim any intention or obligation to update any forward-looking statements as a result of developments occurring after the date of this publication.

Trademarks in this issue: Real World Signal Processing, the black/red banner, DSP/BIOS, MicroAmplifier, MicroStar BGA, MicroStar Junior, NanoFree, NanoStar, OMAP, PowerPAD, SMARTDM, TMS320, TMS320C2000, C2000, TMS320C24x, TMS320C28x, TMS320C5000, C5000, TMS320C54x, C54x, TMS320C55x, C55x, C6000, TMS320C64x, C64x, TMS320C67x, C67x and VelociTI are trademarks of Texas Instruments. ARM is a registered trademark of ARM Limited. ColdFire is a registered trademark of Motorola, Inc. Intel is a registered trademark of Intel Corporation. Windows is a registered trademark of Microsoft Corporation. All other trademarks are the property of their respective owners.

Cover photo: The ultrasound image of Baby Shaffer is courtesy of Bachel and Brian Shaffer.

© 2004 Texas Instruments Incorporated Printed in the U.S.A. at on recycled paper.

Texas Instruments Incorporated

14950 FAA Blvd. Fort Worth, TX 76155-9950

Address service requested

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated