Overview of Automotive Network

June 27, 2017

Automotive Ethernet

Design Case

Further Inner Vehicle Network

BOURNS

Automotive Ethernet

Interface

Basic Ethernet Transceiver Circuit

100Mbps MAC

Interface

BOURNS

Bourns Magnetics Manufacturing capabilities

- Bourns China Custom, unique, high quality magnetics. For automation projects Bourns SEMS (Specialist engineering manufacturing systems) group is used and also provides support to CM's to ensure the best, most efficient design is implemented
 - AEC-Qualified manufacturing
- Possible to utilize Bourns Mexico facilities for suitable products for America's markets
- CM's providing products across magnetic spectrum (e.g. chip inductors, LAN, Power, Telecom, automotive, power), all levels of production from manual to full-auto are used. Product type, volumes and location of manufacture dictate what level of automation is used
 - Winding manual, semi-auto and full auto used across range of products (toroids, drum core, shaped cores)
 - Taping manual, semi-auto and full auto (shaped cores)
 - Termination Soldering and welding manual, semi-auto, full auto
 - Testing manual, semi-auto and full auto covering both electrical and mechanical measurements
 - Packaging manual, semi-auto and full auto

• Examples of equipment used is shown in the following slides

Small toroid winders, typically for LAN products

Auto testing

BOURNS

SM Inductor winding, termination, epoxying

Semi auto winding

Banks of three axis multispindle winders and taping

Example of full-auto assembly from winding to termination

SM drum core inductor winding and welding

Custom Auto soldering

BOURNS

Common mode choke winding, welding and assembly

Automotive Grade Signal Magnetics

- Ethernet, CANbus, Flexray rely on magnetics for providing
 - Isolation and Protection

 Filtering and removal of common mode noise from Signal Lines (Eg ECU bus on 48V to 12V converter)

10

XREF list for Pulse part in IsoSPI/BMS

BOURNS

Bourns P/N	Compeitor	Specification
SM13072APEL	Halo TG110– AE050N5LF	16pins SMT SOIC LAN Transformer, 60V(est)/1.5kVrms,6.4*12.7*9.5mm,–40°C to 85/125°C
PT61018AAPEL	Pulse HX1188FNL	16pins SMT LAN Transformer, 60V (est) 1.5kVrms, 6*12.7*9.7mm, –40°C to 85°C
SM91074AL SM13072APEL	Pulse HM1188NL	16pins SMT LAN Transformer, 60V (est) 1.5kVrms, 6*12.7*9.7mm, –40°C to 105°C
SM91501AL	Pulse HM2102NL	12 SMT Dual TSF, –40°C to 125°C 1000V 4.3kVdc l l 4.9mm 14.8mm 14.7mm
SM91502AL	Pulse HM2101NL /2103NL	6 SMT –40°C to 105°C 1000V 4.3kVdc – l 5.7mm 7.6mm 9.3mm
PT20095AL BA60565CS (4578)	Sumida CEEH96BNP	600V/2.5kVrms 7*9.2*12mm 4SMT Transformers,Input voltage=9-16V, Output voltage=5V. inductance=650uH±15%, Current=180mA, Turn ratio=60:30, Hi-Pot test =3KVrms@1mA,2sec.

11

Common Mode Chokes -SMD

BOURNS

Inductor Model	SRF – Power Application Shielded	DR, SRF - Signal Line Application Shielded		
Appearance		10MA 051a		
Features	Ferrite core Shielded construction – low radiation High current Wide frequency range	Ferrite core Shielded construction – low radiation Wide frequency range		
Applications	Power line RFI / EMI Filters, noise suppression	Signal line RFI / EMI Filters, noise suppression, CAN Bus		
Models Available	9	8		
Footprint	5.2x5 to 13x13 mm	2x1.2 to 9x5.4 mm		
Height	1.7 to 8 mm	1.2 to 4.7 mm		
Inductance	0.33 to 6,500 μH			
Impedance	5 – 15,000 Ohms	1 – 10,000 Ohms		
Frequency	100k – 1GHz	100k – 1GHz		
Rated Current	0.2 to 9 A	0.08 – 0.5 A		

Common Mode Chokes – Power

7100, 7300, 7400, 7500, 8100 PM3700, SRF0703, SRF1260, SRF1280

- Power conversion application
- High perm. toroid or UU core, close magnetic loop construction to maximize CM impedance
- Available Models: 9
- Inductance Range: 0.2 50mH
- Rated Current Range: 0.27 20A
- Frequency Range: 10K 50MHz
- Size Range:

0.75-1.7" (L) x 0.43-0.9" (W) x 0.6-1.2" (H)

Common Mode Chokes – Data Line

DR221, DR331, SRF4530/3225/2012

- Data line application
- Toroid, close magnetic loop construction to maximize CM impedance
- Available Models: 10
- Inductance Range: 11 4700uH
- Impedance Range: 60 15K Ohms
- Frequency Range: 100K 1GHz
- Rated Current Range: 100 500mA
- Size Range:

2 – 9 (L) x 1.3 – 5.4 (W) x 1.3 – 4.7 (H) mm

0518

Reference Designs

• DR331 Sieries Common Mode Chokes in TI CAN Network App-Nptes

Application Hint 2: Common-Mode Choke Choice

3 Application Hint 2: Common-Mode Choke Choice

To completely avoid the situation that causes the transient from a dc short circuit on the bus, the common-mode choke could be removed, which would eliminate the inductively generated voltage transient. However, if a common-mode choke is mandatory, there are various common choke designs and values that minimize the inductive voltage transient generation. With proper selection, the transient effect can be minimized while allowing the benefits of the common-mode choke, if one is required.

Measurements have shown that the transient voltage levels are highly dependent on the common-mode chokes core type and inductance value.

The measurement results for different chokes are summarized in Table 1 and Table 2. The test conditions for these measurements are as shown in Figure 3, where the R_{Term_x} , C_{Term} , and D_{ESD} are left open, $C_{BUS} = 100 \text{ pF}$, and a short circuit to 12 V is applied to either CANL or CANH at R_{TERM} , the external termination at the opposite end of the 1-m long CAN bus cable.

Table 1. Measurement of Transients for Different Common-Mode Chokes With CANL Shorted to 12 V

Choke	Winding	Core	L _r (μΗ)	L _{s, typ} (nH)	I _R (mA)	R _{max} (mΩ)	Measured Transient Voltage at Transceiver Bus Pins (V)	
							CANL	CANH
Bourns DR331-513AE	Sector	Toroid	51	2000	500	300	38,7	34,7
Bourns DR331-513BE	Bifilar	Toroid	51	600	500	300	48,8	46,6

CAN (Controller Area Network) Bus

BOURNS

Common Mode Choke : To reduce noise.

TVS Diode : To offer ESD protection

CAN Bus Solution in Car Camera

Common Mode Choke (CMC)

- SRF4530A-510Y : Size 4530
 - Competitor : PE-1812ACC510STS (Pulse) ACT45B-510-2P-TL(TDK)
- SRF3225TA-510Y : Size 3225
 Competitor : ACT1210-510-2P (TDK)

TVS Diode

• CDSOT23-T24CAN :

Competitor : NUP2105L (On-Semi) SM24CANA (LittelFuse) PESD2CAN (NXP)

17

BOURNS

CDSOT23-T24CAN

Specifications

BOURNS

		Bourns	OnSemi	Littelfuse	
Parameter	Units	CDSOT23-T24CAN	NUP2105L	SM24CANB	
VDRM	V	24	4 24		
IPPSM (8/20 µs Current Waveform)	A	8	8	10	
ESD (Contact)	kV	30	30	30	
V_{BR} min. @ $I_{BR} = 1$ mA	V	26.2	26.2	26.7	
V_{BR} max. @ $I_{BR} = 1$ mA	٧	32	32	Not Specified (NS	
I _R max.	μA	0.1	0.1	0.1	
Typical V _C @ I _{PPSM}	V	40	44 max.	50 max.	
C (Line to GND), typical	pF	22	30 max.	30	
AEC-Q101 Qualified	-	No ⁽³⁾	Yes	Yes	
Absolute Maximum Ratings (@ T _A = 2	5 °C Unless Oth	nerwise Noted)			
Rating	Symbol	Value	Unit		
Repetitive Peak Off-state Voltage	VDRM	24	V		
Non-Repetitive Peak Impulse Current, 8/20	µs Waveform	IPPSM	8	A	
Non-Repetitive Peak Impulse Current, 1.2/5	0 µs Waveform	IPPSM	6	A	
ESD (IEC 61000-4-2 Contact)		30	kV		
Junction Temperature	TJ	-40 to +150	°C		
Storage Temperature	Teta	-55 to +150	°C		

Very High ESD Rating

Easily meets IEC61000-4-5 Level 1 requirements for unshielded symmetrical interconnection lines

ChipGuard[®] ESD Suppressor Product Using Air Gap

- Air Gap technology fabricated in surface mount devices (SMD, 0603 / 0402 chip type)
- Designed by air space discharge technology; provides bidirectional protection

Bourns Automotive Approved ESD Protectors

Part Number	Working Voltage (V)	ESD Rating	BreakDown Voltage	Capacitance	Clamping Voltage(V)
	_	8KV Contact,	050)/		05
CG0603IMLC-05E	5	15KV AIr	250V	0.5pF	25
		8KV Contact,			
CG0603MLC-12E	12	15KV Air	250V	0.5pF	25
		8KV Contact,			
CGA0402MLC-05E	5	15KV Air	300V	0.2pF	30
		8KV Contact,			
CGA0402MLC-12E	12	15KV Air	300V	0.2pF	30
		8KV Contact,			
CGA0402MLC-24E	24	15KV Air	300V	0.2pF	30
		8KV Contact,			
CGA0603MLC-05E	5	15KV Air	300V	0.2pF	30
		8KV Contact,			
CGA0603MLC-12E	12	15KV Air	300V	0.2pF	30
		8KV Contact,			
CGA0603MLC-24E	24	15KV Air	300V	0.05pF	30

AECQ PTC in Rear view Cameras

- Background :
 - Cameras using CMOS technology typically run very hot, 95 °C or 100°C
 - This rules out many standard PTCs (e.g. MF-PSMF010X),
- Solution :
 - NEW MF-PSHT010X
 - Use freeXpansion SMD design, 0805 size
 - Uses High temperature material
 - Operates up to 125°C

EOURNS

MF-PSHT010X & MF-PSMF010X R-T curve comparison

